Драйвер MOSFET транзистор IRF520 0-24В модуль Arduino PIC ARM
Модули и платы
₴40
Модуль управления нагрузкой для Arduino собран на полевом транзисторе IRF520.
Нет в наличии
Артикул: 000018
Категория: Модули и платы
Описание
Отзывы (0)
Модуль драйвера управления нагрузкой на транзисторе IRF520 используется для подключения к Arduino контроллеру или другому микропроцессорному управляющему устройству нагрузки постоянного тока мощностью до 120 Вт. Модуль может выполнять функцию коммутации, а также функцию управления нагрузкой. Через модуль к контроллеру можно подключать светодиодное освещение, двигатели постоянного тока, маломощные компрессоры, электромагнитные пускатели и т.п.
Модуль имеет три разъема для подключения к контроллеру, для подключения нагрузки и для подключения внешнего источника питания:
- штыревые контакты, обозначенные на плате модуля SIG, VCC и GND, используются для подключения к контроллеру;
- клеммы зажимы, обозначенные на плате модуля V+ и V-, используются для подключения управляемых устройств или коммутируемых устройств;
- клеммы зажимы, обозначенные на плате модуля VIN и GND, используются для подключения внешнего источника питания.
Для использования модуля нужно к контактам SIG и GND подключить контроллер. Причем, если нужно управлять нагрузкой, то к контакту SIG нужно подключать ШИМ выход контроллера. Если нужно управлять коммутацией, то к контакту SIG нужно подключать цифровой выход контроллера. Если на контакте SIG есть напряжение, то горит красный светодиод. Контакт GND используется как общий вывод, контакт VCC не используется.
Далее к контактам модуля V+ и V- нужно подключить управляемое или коммутируемое устройство с максимальной мощностью 120 Вт. При подключении управляемого устройства нужно соблюдать полярность.
Если устройство подключается к модулю на управление нагрузкой, то для него нужно внешнее питание. Внешнее питание подключается к контактам VIN и GND. Значение мощности внешнего блока питания подбирается в зависимости от потребности управляемого устройства. Максимальные выходные параметры внешнего блока питания могут быть 24 В и 5 А постоянного тока. При коммутируемом токе больше 1 А на транзистор нужно установить радиатор.
Характеристики:
- собран на полевом транзисторе: IRF520;
- используется для: коммутации, управлением нагрузкой;
- управляющее напряжение: 5 – 20 В;
- напряжение для управляемых устройств: 24 В;
- максимальный ток для управляемых устройств: 5 А;
- максимальная коммутируемая мощность: 120 Вт;
- размеры: 31 х 26 х 17 мм;
- вес: 6 г.
Вам также будет интересно…
Транзистор | Электронные печеньки
Транзистор
Транзистор — полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.
Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:
Биполярный транзистор
Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:
Коллектор (англ. collector) — подаётся высокое напряжение, которым транзистор управляет
- База (англ. base) — подаётся или отключается ток для открытия или закрытия транзистора
Эмиттер (англ. emitter) — «выпускной» вывод транзистоа. Через него вытекает ток от коллектора и базы.
Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как hfe (в английской литературе называется gain).
Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор->эмиттер. Превышение этих значений ведёт к перегреву и выходу из строя транзистора.
Весёлые картинки:
Работа биполярного транзистора
NPN и PNP биполярные транзисторы
Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.
От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P:
Обозначение NPN (слева) и PNP (справа) транзисторов на схеме
NPN транзисторы более распространены в электронике, потому что являются более эффективными.
Полевый транзистор
Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название — полевой.
Полевые транзисторы имеют как минимум 3 вывода:
Сток (англ. drain) — на него подаётся высокое напряжение, которым хочется управлять
Затвор (англ. gate) — на него подаётся напряжение для управления транзистором
Исток (англ. source) — через него проходит ток со стока, когда транзистор «открыт»
Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.
N канальные и P канальные полевые транзисторы
Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.
P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.
Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме
Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.
Транзистор Дарлингтона
Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.
Схема составного транзистора дарлингтона
Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:
Подключение мощного мотора с помощью транзистора
На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (hfe).
ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.
При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.
Транзисторы — SparkFun Learn
Авторы:
Джимблом
Избранное
Любимый
83
Одним из наиболее фундаментальных применений транзистора является его использование для управления потоком энергии к другой части цепи, т. е. использование его в качестве электрического переключателя. Управляя им либо в режиме отсечки, либо в режиме насыщения, транзистор может создавать двоичный эффект включения/выключения переключателя.
Транзисторные переключатели являются важными элементами схемы; они используются для изготовления логических вентилей, которые затем используются для создания микроконтроллеров, микропроцессоров и других интегральных схем. Ниже приведены несколько примеров схем.
Транзисторный переключатель
Давайте рассмотрим самую простую схему транзисторного переключателя: переключатель NPN. Здесь мы используем NPN для управления мощным светодиодом:
Наш управляющий вход течет в базу, выход привязан к коллектору, а на эмиттере поддерживается фиксированное напряжение.
В то время как обычный переключатель требует физического переключения привода, этот переключатель управляется напряжением на базовом контакте. Вывод ввода-вывода микроконтроллера, такой как в Arduino, можно запрограммировать на переход в высокий или низкий уровень для включения или выключения светодиода.
Когда напряжение на базе превышает 0,6 В (или любое другое значение V th вашего транзистора), транзистор начинает насыщаться и выглядит как короткое замыкание между коллектором и эмиттером. Когда напряжение на базе меньше 0,6 В, транзистор находится в режиме отсечки — ток не течет, потому что это выглядит как разомкнутая цепь между C и E.
Вышеприведенная схема называется переключателем нижнего плеча , потому что переключатель — наш транзистор — находится на низком (заземленном) конце цепи. В качестве альтернативы мы можем использовать PNP-транзистор для создания переключателя верхнего плеча:
Подобно схеме NPN, база является нашим входом, а эмиттер привязан к постоянному напряжению. Однако на этот раз эмиттер подключен к высокому уровню, а нагрузка подключена к транзистору на стороне земли.
Эта схема работает так же хорошо, как коммутатор на основе NPN, но есть одно огромное отличие: чтобы включить нагрузку, база должна быть низкой. Это может вызвать осложнения, особенно если высокое напряжение нагрузки (V CC (12 В, подключенный к эмиттеру V E на этом рисунке) выше, чем высокое напряжение нашего управляющего входа. Например, эта схема не будет работать, если вы попытаетесь использовать Arduino с питанием 5 В для выключения двигателя с напряжением 12 В. В этом случае было бы невозможно выключить переключатель , потому что V B (подключение к управляющему выводу) всегда будет меньше, чем V E .
Базовые резисторы!
Вы заметите, что в каждой из этих схем используется последовательный резистор между управляющим входом и базой транзистора. Не забудьте добавить этот резистор! Транзистор без резистора на базе подобен светодиоду без токоограничивающего резистора.
Вспомним, что в каком-то смысле транзистор — это просто пара соединенных между собой диодов. Мы смещаем диод база-эмиттер в прямом направлении, чтобы включить нагрузку. Для включения диода требуется всего 0,6 В, большее напряжение означает больший ток. Некоторые транзисторы могут быть рассчитаны только на максимальный ток 10-100 мА, протекающий через них. Если вы подаете ток выше максимального номинала, транзистор может взорваться.
Последовательный резистор между нашим источником управления и базой ограничивает ток в базе . Узел база-эмиттер может получить счастливое падение напряжения 0,6 В, а резистор может снизить оставшееся напряжение. Значение резистора и напряжение на нем определяют ток.
Резистор должен быть достаточно большим, чтобы эффективно ограничивать ток, но достаточно мал, чтобы подавать на базу достаточный ток. Обычно бывает достаточно от 1 мА до 10 мА, но проверьте техническое описание вашего транзистора, чтобы убедиться в этом.
Цифровая логика
Транзисторы можно комбинировать для создания всех наших основных логических элементов: И, ИЛИ и НЕ.
(Примечание. В настоящее время МОП-транзисторы чаще используются для создания логических элементов, чем биполярные транзисторы. МОП-транзисторы более энергоэффективны, что делает их лучшим выбором.) , или вентиль НЕ:
Инвертор, построенный из транзисторов.
Здесь высокое напряжение на базе включит транзистор, который эффективно соединит коллектор с эмиттером. Так как эмиттер соединен с землей напрямую, коллектор тоже будет (правда, чуть выше, где-то около В CE(сб) ~ 0,05-0,2 В). С другой стороны, если вход низкий, транзистор выглядит как разомкнутая цепь, а выход подтягивается до VCC
(На самом деле это фундаментальная конфигурация транзистора, называемая с общим эмиттером . Подробнее об этом позже.)
Логический элемент И
Вот пара транзисторов, используемых для создания 2-входового И-вентильного элемента :
2-входового И-вентильного элемента, построенного из транзисторов.
Если один из транзисторов выключен, то на выходе коллектора второго транзистора будет установлен низкий уровень. Если оба транзистора «включены» (базы обоих высокие), то выход схемы также высокий.
ИЛИ-вентиль
И, наконец, 2-входовой ИЛИ-вентиль :
2-входовой ИЛИ-вентиль, построенный на транзисторах.
В этой схеме, если один (или оба) A или B имеют высокий уровень, соответствующий транзистор включится и установит на выходе высокий уровень. Если оба транзистора закрыты, то через резистор на выходе подается низкий уровень.
Н-мост
Н-мост представляет собой схему на основе транзисторов, способную управлять двигателями как по часовой, так и против часовой стрелки . Это невероятно популярная схема — движущая сила бесчисленных роботов, которые должны быть в состоянии двигаться как вперед , так и назад.
По сути, Н-мост представляет собой комбинацию из четырех транзисторов с двумя входными линиями и двумя выходами:
Догадаетесь, почему он называется Н-мостом?
(Примечание: обычно хорошо спроектированный H-мост включает в себя обратные диоды, базовые резисторы и триггеры Шмидта.)
Если на оба входа подается одинаковое напряжение, выходы двигателя будут одинаковы напряжения, и двигатель не сможет вращаться. Но если два входа противоположны, двигатель будет вращаться в одном или другом направлении.
The H-bridge has a truth table that looks a little like this:
Input A | Input B | Output A | Output B | Motor Direction |
---|---|---|---|---|
0 | 0 | 1 | 1 | Stopped (braking) |
0 | 1 | 1 | 0 | Clockwise |
1 | 0 | 0 | 1 | Counter-clockwise |
1 | 1 | 0 | 0 | остановлен (торможение) |
. Оборок. Оборок — это цепь, что вызывает срок. Генераторы используются во всех видах схем: от простого мигания светодиода до создания тактового сигнала для управления микроконтроллером. Существует множество способов создания схемы генератора, включая кварцевые кристаллы, операционные усилители и, конечно же, транзисторы.
Вот пример колебательного контура, который мы называем нестабильным мультивибратором . Используя обратную связь , мы можем использовать пару транзисторов для создания двух взаимодополняющих колебательных сигналов.
Помимо двух транзисторов, ключом к этой схеме являются конденсаторы. Крышки попеременно заряжаются и разряжаются, в результате чего два транзистора попеременно включаются и выключаются.
Анализ работы этой схемы является прекрасным исследованием работы как конденсаторов, так и транзисторов. Для начала предположим, что C1 полностью заряжен (сохраняет напряжение около В CC ), C2 разряжен, Q1 включен, а Q2 выключен. Вот что происходит после этого:
- Если Q1 включен, то левая пластина C1 (на схеме) подключена примерно к 0В. Это позволит C1 разрядиться через коллектор Q1.
- Пока C1 разряжается, C2 быстро заряжается через резистор с меньшим номиналом — R4.
- Как только C1 полностью разрядится, его правая пластина поднимется примерно до 0,6 В, что включит Q2.
- На данный момент мы поменяли местами состояния: C1 разряжен, C2 заряжен, Q1 выключен, а Q2 включен. Теперь мы делаем тот же танец в другую сторону.
- Включение Q2 позволяет C2 разряжаться через коллектор Q2.
- Пока Q1 выключен, C1 может относительно быстро заряжаться через R1.
- Как только C2 полностью разрядится, Q1 снова включится, и мы вернемся в исходное состояние.
Это может быть трудно понять. Вы можете найти другую отличную демонстрацию этой схемы здесь.
Выбрав определенные значения для C1, C2, R2 и R3 (и оставив R1 и R4 относительно низкими), мы можем установить скорость нашей схемы мультивибратора:
Таким образом, при значениях конденсаторов и резисторов, установленных на 10 мкФ и 47 кОм соответственно, частота нашего генератора составляет около 1,5 Гц. Это означает, что каждый светодиод будет мигать примерно 1,5 раза в секунду.
Как вы уже, наверное, видите, существует тонна схем, в которых используются транзисторы. Но мы едва поцарапали поверхность. Эти примеры в основном показывают, как транзистор можно использовать в режимах насыщения и отсечки в качестве переключателя, но как насчет усиления? Время для большего количества примеров!
Транзистор и реле с Arduino. — Робо Индия || Учебники || Изучите Ардуино |
Arduino 0 комментариев
В этом руководстве объясняется следующая концепция: Переключение транзисторов, Работа реле, Переключение с помощью реле на Arduino, Управление двигателем на Arduino с помощью реле.
1. Введение:
В этом руководстве объясняются следующие вещи-
- Переключение с помощью транзистора NPN.
- Работа и концепция реле
- Переключение с помощью реле.
- Реле и Arduino
- Управление двигателем с помощью реле на Arduino
1.2 Переключение с помощью транзистора NPN.
сделайте следующую схему. Когда вы даете высокий сигнал на входе, он подключает светодиод к GND. Здесь мы принимаем ВЫСОКИЙ вход с помощью кнопочного переключателя.
1.3 Реле:
Следующее видео Robo India объясняет работу и концепцию реле-
Чтобы использовать реле с микроконтроллером, нам также нужен транзистор для переключения.
1.3 46ND006-P:
Это реле, которое мы собираемся использовать. Это реле имеет два полюса, это означает, что есть два переключателя, но оба запускаются одной катушкой, поэтому они работают одновременно. Следующая схема поможет вам лучше понять реле, которое мы используем.
2. Требуемое оборудование
Для выполнения примера данного руководства потребуется следующее оборудование.
3. Строительная схема – 1 (Понимание реле)
Эта схема поможет вам понять концепцию реле. Наше реле имеет два полюса, поэтому мы подключили к нему 4 светодиода. Два нормально подключенных контакта и два нормально разомкнутых контакта. Также имеется один светодиодный индикатор состояния. Светодиод состояния показывает, что реле включено или выключено. Если светодиод состояния горит, это означает, что реле включено (общий подключен к нормально замкнутому) и наоборот.
Красный светодиод – светодиод состояния реле
Желтый светодиод – подключен к клемме NC реле
Зеленый светодиод – подключен к клемме NO реле
Если красный 1 5 50 – 9000 не горит – означает, что реле выключено – означает – Общие клеммы реле подключены к НЗ – Таким образом горят желтые светодиоды.
Если горит красный – значит, реле включено – значит – Общие клеммы реле подключены к NO – Таким образом, горят зеленые светодиоды.
Видео поможет вам разобраться.
3.1 You may go with Robo India’s R-Board(UNO Compatible)-
here is the schematic:
or
3.2 You may go with original Arduino UNO Board-
вот схема:
4. Программирование:
Нам не нужно специальное программирование для работы реле транзистора, требуется простое программирование цифрового выхода. Таким образом, программа, которую мы добавили здесь, такая же, как и в нашем другом уроке 9.0023 Цифровой выход — светодиод мигает. На протяжении всего руководства используется один и тот же код.
Вы можете скачать код (Arduino Sketch) отсюда.
// Учебное пособие по цифровому выводу от ROBO INDIA // www. roboindia.com // Цифровой выход берется на светодиод, который остается включенным в течение одной секунды и // ВЫКЛ для другого. // Определение контакта 2 как светодиода. постоянный светодиод = 2; // из схемы видно, что мы подключили светодиод на вывод 2 недействительная установка () { pinMode (LED, ВЫХОД); // Определение вывода светодиода как вывода OUTPUT. } // Упомянутый ниже код работает вечно (бесконечный цикл) недействительный цикл () { цифровая запись (LED, ВЫСОКАЯ); // Светодиод включается (1/HIGH/+5V) задержка(1000); // Ожидание в течение одной секунды. цифровая запись (светодиод, низкий уровень); // Светодиод гаснет (0/LOW/0V/GND) задержка(1000); // здесь и выше Задержка в миллисекундах (1000 = 1 секунда) }
5. Схема -2 (управление двигателем на Arduino с помощью реле):
Как мы упоминали ранее, кодировка одинакова для всего урока. Здесь мы управляем одним двигателем постоянного тока на плате Arduino. Двигатель потребляет больше энергии, чем другая схема, поэтому вам потребуется отдельный источник питания для запуска двигателя.