Схема стробоскопа на светодиодах: Стробоскоп на светодиодах своими руками, схема — Своими руками — Статьи

Содержание

Стробоскоп на светодиодах своими руками, схема — Своими руками — Статьи

Стробоскоп- это оборудование, которое способно непрерывно воспроизводить импульсы света. В настоящее время наиболее распространённым является стробоскоп на светодиодах. Он нашёл своё широкое применение в различных сферах нашей жизни. Так, например, данное устройство является незаменимым в индустрии строительства и ремонта (подсветка домов, зданий и сооружений), в рекламной индустрии, машиностроении, а также при оформлении ресторанно-гостиничных комплексов, кафе, ночных клубов и прочего.

Благодаря достаточно простой конструкции, стробоскоп на светодиодах можно легко сделать своими руками. Для этого необходима лишь принципиальная схема, микроконтроллер, защитное устройство, а также датчики, в зависимости от функционального назначения устройства.

Данный автомобильный стробоскоп является достаточно мощным и может обеспечить питанием ряд светодиодов. Для того, чтобы собрать устройство, следует купить таймер на микросхеме NE555 и полевой транзистор. Наиболее подходящими могут стать транзисторы типа IRFZ44, IRF3205, КП812Б1 и ряд других.

Искомое устройство получается достаточно компактным и мощным. Кроме того, можно производить регулирование частоты вспышек светодиодов. Вследствие того, что на переходе возникает малый спад напряжения, лучше всего применить диод шоттки. Также, необходимо создать требуемую герметичность пластмассового корпуса, в котором находится плата. В этом случае незаменимым будет синтетический силикон.

Полевой транзистор, как правило, перегревается при длительной работе, поэтому следует устанавливать его на теплоотвод. Приведённая схема может питать светодиоды, напряжение которых не превышает 12 вольт. В противном случае проводка сгорит.

Достаточно большое количество автолюбителей и профессионалов делают самодельный стробоскопом, так как эта процедура, практически, не требует каких- либо особых знаний и навыков. Для того, чтобы сделать стробоскоп своими руками и при этом соблюсти все требования и предпочтения, необходимо качественным образом подойти к выбору светодиодов. В нынешнее время наиболее популярными являются LED-приборы, так как срок их службы, а также яркость свечения значительно превышают любые другие виды излучателей.

Похожие материалы

СТРОБОСКОП СВОИМИ РУКАМИ

   Зачем нужен стробоскоп? Автолюбитель, с помощью стробоскопа сможет в течение нескольких минут проверить и отрегулировать зажигание на своем автомобиле, а также проверить работоспособность центробежного и вакуумного регуляторов опережения. Представляется интересным, спаять такой прибор своими руками. Конечно импульсные лампы обеспечивают высокую яркость вспышек, но у них ограниченный срок службы, поэтому выбор пал на светодиоды. LED приборы служат очень долго, но яркость их свечения меньше, что вынуждает использовать в излучателе группу из нескольких штук. 

   Для синхронизации вспышек с моментом ВМТ использован индуктивный датчик. Такой датчик стабильнее емкостного. Принципиальная схема стробоскопа показана на рисунке. Его основа – микроконтроллер. Контроллер обеспечивает защиту светодиодов от повреждения в случае аварийного превышения напряжения питания. 

   Максимально допустимый ток — 1 А. Защиту обеспечивает микроконтроллер, контролируя напряжение питания. Через делитель напряжения R3, R4 напряжение, пропорциональное питанию, подается на вход PB1 микроконтроллера. Номиналы делителя подобраны так, что при превышении значения 18 В контроллер прекращает формирование импульсов, предохраняя светодиоды от повреждения. Диод VD1 защищает стробоскоп от ошибочной перемены полярности напряжения питания. 

   В неподвергавшейся программированию микросхеме записан калибровочный байт, который должен остаться неизменным. Если микросхема подвергалась программированию или стиранию, следует вновь считать калибровочный байт в программаторе и записать его в старший и младший разряды слова по адресу $1FF. В файл программы калибровочный байт не включен, т.к. он индивидуален для каждого экземпляра микроконтроллера. Прошивка для микроконтроллера и чертёж печатной платы стробоскопа в архиве. Транзистор BUZ71A можно заменить аналогичным полевым транзистором с допустимым импульсным током стока не менее 3А, например IRLZ14, IRL510, IRL530N. Светодиод — любой мощный.

   Катушка стробоскопа мотается на кольцевом феррите с внутренним диаметром 12 мм 2000НМ. Наружный диаметр не критичен, а внутренний должен превышать диаметр высоковольтного провода к свече зажигания на несколько миллиметров. Расколоть кольцо такого размера не сложно, но можно приобрести два одинаковых кольца и сточить половину каждого из них на наждаке, добиваясь по возможности плотного, с минимальным зазором, прилегания торцов получившихся полуколец. Потом нужно намотать на нем катушку из 100 витков провода ПЭВ-2 диаметром 0,1…0,2 мм. Половинки датчика вклеивают в углубления губок бельевой прищепки подходящего размера с помощью силиконового автогерметика. Выводы катушки подпаивают к двухпроводному экранированному кабелю длиной около метра, экранирующую оплетку припаивают к корпусу зажима. Для самодельного автомобильного стробоскопа подойдет подходящий по размерам корпус от фонарика.  

   Размеры печатной платы стробоскопа могут быть еще меньше, если использовать микроконтроллер, полевой транзистор и резистор R6 в корпусах для поверхностного монтажа. Стробоскоп не требует налаживания. Убедиться в его работоспособности можно, если отпаять от платы датчик и замкнуть точку соединения резисторов R1 и R2 с цепью питания +14 В. В момент замыкания светодиод кратковременно вспыхнет. Если на работающем двигателе прибор работает плохо, снимите зажим с датчиком с высоковольтного провода и разверните его. Эдуард Я.

   Форум по обсуждению материала СТРОБОСКОП СВОИМИ РУКАМИ

Делаем простой стробоскоп для установки зажигания своими руками

Светодиодный стробоскоп для установки зажигания позволяет быстро и с высокой точностью выставлять оптимальный угол опережения зажигания (УОЗ) в автомобиле. Данный параметр играет важную роль в корректной работе двигателя. Небольшое смещение в момент зажигания приводит к потере мощности, вследствие возросшего расхода топлива и перегрева двигателя.

Несмотря на большой ассортимент промышленно выпускаемых приборов для проверки и установки УОЗ, актуальность создания стробоскопа своими руками не потеряла смысл и в наши дни. Представленная схема самодельного стробоскопа для автомобиля не требует наладки после сборки и изготавливается из доступных деталей.

Принципиальная схема стробоскопа

Схема разработана и представлена в девятом издании журнала «Радио» в далеком 2000 году. Однако, благодаря своей простоте и надежности, остается актуальной и в наши дни.

В принципиальной электрической схеме стробоскопа для авто можно условно выделить 4 части:

  1. Цепь питания, состоящая из выключателя SA1, диода VD1 и конденсатора С2. VD1 защищает элементы схемы от ошибочной смены полярности. С2 блокирует частотные помехи, предотвращая сбои в работе триггера. Для подачи и отключения питания используется выключатель SA1, для этого подойдет любой компактный выключатель или тумблер.
  2. Входная цепь, которая состоит из датчика, конденсатора С1 и резисторов R1, R2. Функцию датчика выполняет зажим «крокодил», который закрепляется на высоковольтном проводе первого цилиндра. Элементы С1, R1, R2 представляют собой простейшую дифференцирующую цепь.
  3. Микросхема триггера, собранная по схеме двух однотипных одновибраторов, которые формируют на выходе импульсы заданной частоты. Частотозадающими элементами являются резисторы R3, R4 и конденсаторы С3, С4.
  4. Выходной каскад, собранный на транзисторах VT1-VT3 и резисторах R5-R9. Транзисторы усиливают выходной ток триггера, что отражается в виде ярких вспышек светодиодов. R5 задаёт ток базы первого транзистора, а R9 – исключает сбои в работе мощного VT3. R6-R8 ограничивают ток нагрузки, протекающий через светодиоды.

Принцип работы

Схема стробоскопа питается от автомобильного аккумулятора. В момент замыкания выключателя SA1, триггер DD1 переходит в исходное состояние. При этом на инверсных выходах (2, 12) появляется высокий потенциал, а на прямых (1, 13) – низкий потенциал. Конденсаторы С3, С4 заряжены через соответствующие резисторы.

Импульс с датчика, пройдя через дифференцирующую цепь, поступает на тактовый вход первого одновибратора DD1.1, что приводит к его переключению. Начинается перезаряд С3, который через 15 мс заканчивается очередным переключением триггера. Таким образом, одновибратор реагирует на импульсы с датчика, формируя на выходе (1) прямоугольные импульсы. Длительность выходных импульсов с DD1.1 определяется номиналами R3 и С3.

Второй одновибратор DD1.2 работает аналогично первому, уменьшая длительность импульсов на выходе (13) в 10 раз (примерно до 1,5 мс). Нагрузкой для DD1.2 служит усилительный каскад из транзисторов, которые открываются на время импульса. Импульсный ток через светодиоды ограничен исключительно резисторами R6-R8 и в данном случае достигает величины 0,8 А.

Не стоит пугаться столь большого значения тока. Во-первых, его импульс не превышает 1 мс, со скважностью в рабочем режиме не менее 15. Во-вторых, современные светодиоды обладают гораздо лучшими техническими характеристиками в сравнении с их предшественниками из 2000 года, когда эта схема впервые получила практическое применение. Тогда нужно было поискать светодиоды с силой света в 2000 мкд. Сейчас белый LED (от англ. Light-emitting diode) типа C512A-5 мм от компании Cree с углом рассеивания 25° способен выдать 18000 мкд при постоянном токе в 20 мА. Поэтому использование сверхъярких светодиодов позволит значительно снизить ток нагрузки путём увеличения сопротивления R6-R8. В-третьих, время пользования стробоскопом обычно не превышает 5-10 минут, что не вызывает перегрев кристаллов излучающих диодов.

Печатная плата и детали сборки

Самодельный стробоскоп для установки зажигания можно собрать как на недорогих отечественных радиоэлементах, так и на более прецизионных импортных элементах. Ниже представлена плата с применением отечественных компонентов для штыревого монтажа.

Плата в файле Sprint Layout 6.0: plata.lay6

Диод VD1 – КД2999В или любой другой с малым падением прямого напряжения. Конденсатор С1 должен быть высоковольтным с емкостью в 47 пФ и напряжением 400 В. Конденсаторы С2-С4 неполярные серии КМ-5, К73-9 на 0,068 мкФ 16 В. Все резисторы, кроме R4, типа МЛТ или планарные с номиналами, указанными на схеме. Подстроечный резистор R4 типа СП-3 или СП-5 на 33 кОм.

Триггер ТМ2 лучше использовать 561 серии, которая отличается высокой помехоустойчивостью и надёжностью. Но можно заменить его микросхемой 176 и 564 серии, учитывая их распиновку. Транзисторы VT1-VT2 подойдут КТ315 Б, В, Г или КТ3102 с большим коэффициентом усиления. Выходной транзистор – КТ815, КТ817 с любой буквенной приставкой. Светодиоды HL1-HL9 лучше взять сверхъяркие с малым углом рассеивания. Их располагают на отдельной плате по три в ряд. При отсутствии каких-либо деталей схемы их можно заменить более современными аналогами, немного усовершенствовав плату.

Готовую плату управления стробоскопа и плату со светодиодами удобно разместить в корпусе переносного фонарика. При этом необходимо предусмотреть отверстие в корпусе под регулятор R4, а в качестве SA1 можно использовать штатный выключатель.

Настройка

В схеме установлен подстроечный резистор R4, регулировкой которого можно добиться нужного визуального эффекта. Вращая ручку регулятора можно наблюдать, что уменьшение импульса тока ведёт к недостатку освещенности меток, а увеличение – к размытости. Поэтому во время первого запуска стробоскопа необходимо подобрать оптимальную длительность вспышек.

Длина экранированного провода от печатной платы к датчику не должна превышать 0,5 м. В качестве датчика подойдет 0,1 м медного проводника, припаянного к центральной жиле экранированного провода. В момент подключения его наматывают на изоляцию высоковольтного провода первого цилиндра автомобиля, делая 3 витка. Для повышения помехоустойчивости намотку производит максимально близко к свече. Вместо медного проводника можно взять зажим типа «крокодил», который также следует припаять к центральной жиле, а его зубья слегка загнуть внутрь, чтобы не повредить изоляцию.

Установка УОЗ стробоскопом

Прежде чем рассмотреть работу автомобильного стробоскопа, нужно понять суть стробоскопического эффекта. Если движущийся в темноте объект на мгновение осветить вспышкой, то он будет казаться застывшим в месте, где произошла вспышка. Если на вращающееся колесо нанести яркую метку и освещать его яркими вспышками, совпадающими по частоте с частотой вращения колеса, то в момент вспышек можно зрительно фиксировать местоположение метки.

Перед регулировкой момента зажигания автомобиля наносят две метки: подвижную на коленчатом валу (маховике) и стационарную – на корпусе двигателя. Затем присоединяют датчик, подают питание на стробоскоп и включают двигатель в режим холостого хода. Если во время вспышек метки совпадают, то УОЗ выставлен оптимально. В противном случае следует произвести корректировку до полного их совпадения.

Представленный стробоскоп для установки зажигания, собранный своими руками, позволит за несколько минут отладить систему зажигания автомобиля. В результате корректировки вырастет КПД двигателя и увеличится срок его службы.

Автомобильный стробоскоп на светодиодах



электроника для авто

Во многих схемах стробоскопов для определения точного момента зажигания используют лампы ИФК и довольно сложные схемы их «обвески». Мною предложена относительно несложная схема стробоскопа, которая легка в наладке и не имеет дефицитных деталей (см. рисунок).

 

R1C1R2VD1VD2 — звено, согласующее высоковольтный сигнал со входа устройства на вход микросхемы DA1, которая является таймером 1006ВИ1, включенным по схеме одновибратора. На каждый входной импульс на выходе 3 появляется импульс, время существования которого определяется звеном R3C2. Резистором R3 регулируют длительность выходного импульса. На транзисторе VT1 собран усилитель.

На элементе DA1 собран одновибратор, т. е. ждущий мультивибратор, который ожидает входные импульсы с высоковольтного провода первого цилиндра. Датчик этих импульсов представляет собой обычную прищепку, на одной из сторон которой намотан провод диаметром 0,1 …0,3 мм.

Количество витков 30-50, эта обмотка надежно закреплена клеем «Момент» или «Супер цемент», «Глобус» и т.д. Поверхность обмотки защищают обычной изолентой таким образом, чтобы прищепка надежно закрывалась или открывалась. К одному концу этой обмотки припаивают провод, лучше экранированный. Экран провода подключают к «земле» в основной схеме. Элементы R1 C1 R2 R3 согласовывают сигнал от датчика с входом микросхемы. Длительность выходного импульса регулируют звеном R3C2. Транзистор VT1 включает и выключает непосредственно светодиоды HL1-HL9. Свечение светодиодов должно быть ярко-белым. Светодиоды не имеют определенной марки.

Длительность выходного импульса должна быть в пределах 0,5…0,8 мс. Если больше, то светодиоды долго не выдерживают, и пометки на маховике или на шкиве коленвала будут «размыты». При регулировке обороты двигателя нужно держать в пределах 850… 1700 мин-1. Обороты перед регулированием лучше пометить светоотражающей краской.

Детали желательно использовать как можно меньших типоразмеров, от этого зависят размеры платы. Конденсатор С1 слюдяной или К73-11, К73-17 с рабочим напряжением не меньше 500 В. Светодиоды нужно предварительно проверить на функционирование. Их установка на плате должна быть сконцентрирована в одном месте с целью максимального потока излучения. Размеры печатной платы зависят от конкретного устройства, в корпус которого исполнитель хочет «пристроить» стробоскоп. Я расположил стробоскоп в корпусе плоского электрического фонарика. Кроме проводо датчика, о котором было сказано выше, нужно ввести провода +12 В и «масса».

Собранный прибор нужно проверить, чтобы не вывести из строя светодиоды, которые являются самыми дорогими элементами на плате! Вместо них следует включить последовательно соединенные любой светодиод и резистор 1,5 кОм. Подключить провода, провод датчика пристроить на высоковольтный провод первого цилиндра.

Провода не должны касаться движущихся частей двигателя! Заведите двигатель и наблюдайте свечение светодиода. Осциллографом проконтролируйте длительность импульса на выводе 3 DA1, если она лежит в пределах 0,5…0,8 мс, то схема работает, и можно смело подключать светодиоды. Подключение осуществляйте только при заглушенном двигателе!

Отключите шланг «вакуума» от распределителя зажигания. Сделайте все необходимые подключения. Заведите двигатель, направьте луч стробоскопа на шкив коленвала или маховик. Наблюдайте пометки на соответствующих местах согласно техническому описанию конкретного автомобиля. Если пометки стоят на своих местах, то момент за-жигания установлен правильно. Если нет, то потребуется регулировка. Увеличьте обороты двигателя, наблюдайте перемещение пометок. Это констатирует, что центробежный регулятор момента зажигания работает. Осторожно подключите «вакуум», наблюдайте за перемещением положения пометок. Если есть изменение, то вакуумный регулятор распределителя работает.

Э.Л. Вьюга, г. Черкассы

 Смотрите также: Музыкальный стробоскоп 

Стробоскоп на мощных светодиодах

Приветствую, радиолюбители-самоделкины!

Человеческий организм — очень интересное, и одновременно ещё не до конца изученное творение природы. Многие люди утверждают, что инфразвук очень пагубно влияет на их самочувствие и здоровье. Есть целые статьи, посвящённые тому, как колебания воздуха на низких частотах влияют на мозг и могут буквально свести человека с ума. Верить в пагубное влияние инфразвука, или не верить — каждый решает сам, а вот с тем фактом, что резкие вспышки света с небольшой частотой в несколько герц могут полностью дезориентировать человека — факт. Ведь не зря же многие фонарики полицейских имеют функцию стробоскопа — такие вспышки, особенно когда вокруг темнота и зрачок глаза максимально расширен, могут полностью обезоружить человека. Конечно, стробоскоп в качестве средства самообороны — не самый лучший вариант, однако это не единственное его применение. Мощный стробоскоп может выступать в роли световой установки на дискотеках и концертах, создавая непередаваемую атмосферу. Также с помощью мощного стробоскопа можно наблюдать интересные оптические иллюзии — например, если освещать стробоскопом маятник, частота колебаний которого примерно равна частоте вспышек стробоскопа, то визуально частота колебаний маятника будет совершенно другой. Происходит это из-за этого, что человеческий глаз будет «видеть» маятник только в те моменты, когда он освещён вспышкой. Для того, чтобы стробоскоп был не просто детской моргалкой, а именно стробоскопом, для его построения нужно использовать мощные светодиодные матрицы, рассчитанные на напряжение 220В. Для того, чтобы заставить матрицы не просто светится, а мигать, необходимо собрать схему, представленную ниже.

В левой части схемы видны контакты, обозначенные как «220» — сюда будем подавать переменное напряжение прямо из розетки. Далее по схеме можно увидеть, что к сети 220В подключаются диодный мост (выпрямитель напряжения из переменного в постоянное) и импульсный блок питания, на выходе которого 12В постоянного напряжения. Блок питания нужен для питания логической части схемы, которая собрана на микросхеме-таймере NE555. Эта микросхема потребляет небольшой ток, а потому к импульсному блоку питания не предъявляется больших требований — напряжение в пределах 10-14В, максимальный ток должен быть как минимум 100 мА. Здесь можно использовать, например, вот такие миниатюрные импульсные блоки питания, они не отнимут много места в корпусе будущего стробоскопа. Как правило, они имеют два контакта для подключения к сети 220 и два контакта для вывода готовых 12В. Основное место в таких блоках питания занимают трансформатор и конденсаторы. Более простой, но несколько менее надёжный вариант — использовать блок питания на гасящем конденсаторе, рассчитанный на то же самое напряжение.

Контактами +12В и -12В не схеме помечены выходы блока питания, параллельно им следует поставить фильтрующий конденсатор 470-1000 мкФ, на схеме он обозначен как С1. Далее это напряжение поступает на микросхему NE555, которая генерирует прямоугольные импульсы — те самые, от которых будет зависеть частота вспышек стробоскопа. Схема имеет всего один переменный резистор, обозначенный как R3, от его положения будет зависеть частота вспышек стробоскопа, её можно будет менять в больших пределах. Скважность импульсов в этой схеме уже подобрана так, чтобы обеспечивать эффективный световой поток, но при этом не перегревать светодиодные матрицы даже без массивного радиатора. Поэтому желательно соблюдать все номиналы резисторов и конденсаторов в обвязке NE555, ведь от них будет зависеть правильность работы стробоскопа. Диод на схеме — любой кремниевый, например, 1N4148 или 1N4007. Третий вывод микросхемы — выход, с него поступают прямоугольные импульсы и через токоограничивающий резистор идут на затвор полевого транзистора. Этот полевой транзистор — важная часть схемы, ведь именно он коммутирует светодиодные матрицы. Здесь можно применить практически любой мощный полевой транзистор с током как минимум 5А, напряжением 400 и более вольт. Например, подойдёт IRF740. Предпочтение стоит отдать тем транзисторам, у которых меньше сопротивление перехода в открытом состоянии, в этом случае нагрев транзистора будет меньше. При правильно собранной схеме транзистор не должен сильно нагреваться, так как он работает в ключевом режиме, но радиатор не будет лишним для большей надёжности.

По схеме видно, что к сети 220В, параллельно с блоком питания подключается диодный мост, который служит для превращения переменного напряжения в постоянное. После диодного моста подключаются матрицы таким образом, что аноды (плюсы) матриц соединяются непосредственно с плюсовым выходом диодного моста, а катоды (минусы) матриц подключаются через полевой транзистор, который управляется от логической части. При этом минус диодного моста соединяется с минусом импульсного блока питания. На фотографии ниже показано фото диодного моста. Важно хорошо изолировать все электрические части схемы, ведь замыкание сети 220В может привести к печальным последствиям.

Здесь можно использовать любой готовый диодный мост на напряжение как минимум 500В и ток 1А, либо можно собрать диодный мост самому, в соответствии со схемой. Подойдут для этого распространённые диоды 1N4007, рассчитанные на максимальный ток в 1А и напряжение 1000В. Для стробоскопа можно использовать как всего одну матрицу, так и несколько, соединённых параллельно, в этом случае эффект стробоскопа значительно усиливается.

Вся конструкция монтируется в просторном прямоугольном корпусе, при этом три большие светодиодные матрицы располагаются снаружи. Важно хорошо заизолировать контакты, через которые подводится питание к матрицам, иначе будет легко получить удар током при использовании стробоскопа. В обычном режиме работы, когда матрицы светят непрерывно, они довольно сильно нагреваются и требуют радиаторов для охлаждения, но в режиме стробосокопа они питаются импульсами напряжения, а потому и нагреваться будут в несколько раз меньше и даже не требуют радиатора. Допустим нагрев при длительной работе до 40-50°C без вреда для самих светодиодов. Также наружу корпуса выводится переменный резистор R3, который служит для регулировки частоты мерцаний стробоскопа. Здесь можно использовать любой потенциометр сопротивлением 1 МОм, характеристика линейная. На его ручки для красоты и удобства надевается пластиковая ручка. Сама схема генерации импульсов собирается на макетной плате и располагается внутри корпуса, вместе с диодным мостом и миниатюрным блоком питания. Сетевой шнур выводится из корпуса, при желании можно установить выключатель питания и установить разъём. Также не лишним в такой конструкции будет плавкий предохранитель в цепи 220В.

Схема питается от опасного сетевого напряжения, а потому для сборке и наладке схемы нужно быть крайне внимательным и прикасаться к токоведущим частям конструкции только после отключения от сети. Готовая конструкция начинает работать сразу, не требует настройки. Таким образом, получился достаточно мощный стробоскоп, который запросто может ослепить человека, если направить его прямо в глаза — поэтому так делать не стоит. Данную конструкцию можно усовершенствовать, добавив, например, выключатель, который будет напрямую замыкать сток и исток транзистора, тем самым включая светодиоды на постоянную работу. В этом случае стробоскоп становится простым прожектором. Удачной сборки!

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Стробоскоп своими руками на светодиодах

Светодиодный стробоскоп своими руками

Привет всем любителям самоделок. В данной статье я расскажу, как сделать светодиодный стробоскоп своими руками, он будет основан на кит-наборе, заказать который можно по ссылке в конце статьи. Данный кит-набор будет полезен для сборки начинающим, а также тем, кто хочет сделать мигалку на его основе.
Перед тем, как начать читать статью, предлагаю посмотреть видео с подробным процессом сборки кит-набора и его тестирования в работе.

Для того, чтобы сделать светодиодный стробоскоп своими руками, понадобится:

* Кит-набор
* Паяльник, припой, флюс
* Бокорезы
* Мультиметр
* Блок питания 12 вольт или аккумулятор
* Приспособление для пайки «третья рука»
Шаг первый.
В комплекте радиоконструктора идет два гнезда под установку микросхем, четыре печатные платы со всеми необходимыми обозначениями, а также остальные радиодетали, такие как резисторы,диоды, светодиоды и конденсаторы.

Первым делом устанавливаем резисторы на свои места, их номиналы указаны на плате.

Определить сопротивление резисторов можно при помощи мультиметра, а также цветовой маркировки с таблицей или онлайн-калькулятора. Первый способ самый удобный и быстрый, но если у вас нет мультиметра, то узнать номиналы двумя следующими способами также возможно, затратив немного больше времени. С обратной стороны подгибаем выводы радиодеталей, чтобы при пайке они не выпали. Далее на плату устанавливаем диоды, на их корпусе есть полоска, как и на плате, ориентируемся по ней.

Шаг второй.
Затем вставляем транзисторы, ориентируемся по обозначению на плате, которая повторяет форму корпуса.

Далее устанавливаем конденсаторы, на плате электролитический конденсаторы обозначен кругом, плюс на ней промаркирован, минус конденсатора указан на его корпусе белой полоской, также длинная ножка это плюс.

Затем вставляем неполярный керамический конденсатор с маркировкой 104 и после него подстроечный резистор, который позволит изменять частоту стробоскопа.

Шаг третий.
Для подключения микросхем устанавливаем гнезда.

Вставляем гнезда в отверстия на плате, ориентируясь по ключу в виде выемки на корпусе и на обозначении платы. Контакты для подключения питания и светодиодов установим позже.

Из запасных деталей остался один диод, видимо для перестраховки.
Шаг четвертый.
Теперь соберем плату со светодиодами, в комплекте их три, на каждую плату свой цвет светодиодов.

Устанавливаем сначала резистор, а затем светодиоды, при это соблюдаем полярность, длинная ножка это плюс, короткая-минус, на плате минус обозначен черточкой, плюс-треугольником.

С остальными платами поступаем аналогично. С обратной стороны платы загинаем выводы радиодеталей, после чего закрепляем плату в приспособлении для пайки «третья рука» и наносим флюс на контакты.

Далее при помощи паяльника припаиваем контакты, слегка добавляя припой.
Затем берем основную плату с микросхемами и проделываем то же самое, также к платам припаиваем выводы для подключения.

Шаг пятый.
После пайки удаляем остатки выводов при помощи бокорезов. При откусывании лишних частей ножек будьте аккуратны, можно нечаянно оторвать дорожку с платы.

Далее очищаем плату от оставшегося флюса, для этого хорошо подойдет щетка и бензин «калоша» или другой растворитель, например, ацетон.

Затем устанавливаем в гнезда микросхемы согласно ключу на их корпусе и плате.

После этого подсоединяем платы между собой при помощи проводов, которые шли в комплекте.

Стробоскоп готов, можно проверять в работе. Подключаем блок питания к контактам основной платы, соблюдая полярность.

Светодиоды попеременно начинают загораться, частоту стробоскопа можно изменить простым вращением переменного резистора при помощи отвертки с плоским шлицем.


На этом у меня все, данный светодиодный стробоскоп можно использовать в любых целях, возможно и светомузыке при некоторых доработках, а также для того, чтобы набраться опыта в работе с радиоэлектроникой.
Всем спасибо за внимание и творческих успехов.

Купить Kit-набор на Aliexpress

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Мощный стробоскоп своими руками

Очень мощный светодиодный стробоскоп, который отлично дополнит любой танцпол дискотеки. Построен стробоскоп на трех светодиодных матрицах общей мощностью 150 Вт.

Принцип работы устройства состоит в том, чтобы давать очень короткие импульсы света (вспышки) через заданный промежуток времени. По действию очень сильно напоминает молнию во время дождя, когда полностью темное помещение на миллисекунды озаряет яркий свет.
Во время дискотеки это выглядит особенно завораживающе.
Детали:

Светодиоды на сетевое напряжение со встроенным драйвером:

Схема стробоскопа

Я бы не сказал, что схема сложная, скорее простая. Но она не имеет гальванической развязки по напряжению, что означает – нельзя прикасаться ни к одному элементы схемы во время её работы и во время сборки быть особо внимательным.
Визуально схему можно разделить на блок питания 12 В, генератор импульсов, выпрямитель и линейку светодиодов.

Работа стробоскопа

На микросхеме NE555 собран генератор коротких импульсов. Время между импульсами можно менять вращая ручку переменного резистора R3.
К выходу этого генератора подключен ключ на полевом транзисторе, который коммутирует напряжение 220 В, в цепи питания светодиодных матриц, включенных параллельно друг другу.
Светодиодные матрицы питаются постоянным током, который выпрямляется диодным мостом. Это нужно для того, чтобы можно было коммутировать цепь полевым транзистором, который работает только с постоянным напряжением.

Сборка стробоскопа

Стробоскоп собран в кожухе от кабельканала. Светодиоды прикручены к широкой стороне, без радиаторов. Так как светодиод используется где-то на 2-5% от своей мощности (импульсная работа), то надобность в теплоотводах отпадает.

Боковые стенки вырезаны из того же кабельканала и приклеены клеем. Сверху выведен переменный резистор для регулировки частоты мерцания.

Блоки схемы в корпусе:

Предостережение

Светодиоды очень мощные и могут повредить ваши глаза, так что смотреть на них при работе не рекомендуется. Стробирующие вспышки особенно опасны, так как глаз расслабляется в темноте, а яркий импульс проникает напрямую в сетчатку глаза.
Так же не забываем, что вся схема находиться под сетевым напряжением, опасным для жизни.

Результат работы

Работу стробоскопа, к сожалению, не передать ни через фото, ни через видео. Так как даже видеокамера очень плохо улавливает короткий импульс и её в итоге просто засвечивается.
Но я от себя могу сказать, что стробоскоп получился отличный, вспышки короткие и очень яркие. Смотрится очень эффектно, в общем все как надо.

Смотрите видео

sdelaysam-svoimirukami.ru

Стробоскоп своими руками | RadioLaba.ru

Стробоскоп представляет собой устройство для воспроизведения коротких повторяющихся вспышек света. Обычно применяется на дискотеках, концертах, в качестве светодинамической установки. В этой статье я расскажу, как сделать стробоскоп своими руками для наблюдения впечатляющих стробоскопических эффектов.

Если освещать быстрые периодические процессы стробоскопом, то можно наблюдать так называемый стробоскопический эффект, эта зрительная иллюзия, возникающая, когда частота вспышек света приближается к частоте периодического процесса. Для примера можно осветить стробоскопом лопасти вращающегося вентилятора, при совпадении частоты вспышек света с частотой вращения вентилятора, нам будет казаться, что лопасти неподвижны или вращаются очень медленно. Это происходит из-за того, что лопасти вентилятора делают один полный оборот между двумя вспышками света, и мы всегда видим одно и то же положение лопастей в пространстве.

Стробоскопический эффект может возникнуть во время съемки видео, при совпадении частоты съемки кадров видеокамеры и частоты периодического процесса. В результате чего, на отснятом видеоролике можно увидеть неподвижное колесо движущегося автомобиля, или неподвижные лопасти летящего вертолета.

Еще одно полезное применение стробоскопа – это настройка угла опережения зажигания в двигателях внутреннего сгорания. Для этого вспышки света, синхронизируют с высоковольтным разрядом в свече зажигания, при этом благодаря стробоскопическому эффекту можно наблюдать метку на вращающемся маховике коленчатого вала двигателя.

Как правило, в стробоскопах применяются импульсные газоразрядные лампы, способные выдать большой световой поток, для создания ярких вспышек, так как вспышки имеют малую длительность. В настоящее время можно приобрести дешевые и достаточно яркие светодиодные матрицы. Я приобрел в Китае матрицу на 100Вт (ссылка в конце статьи), на основе которой буду собирать светодиодный стробоскоп.

Напряжение питания матрицы составляет 30-34В, ток потребления 3А. Для подключения матрицы я также приобрел в Китае повышающий преобразователь мощностью 150Вт (ссылка в конце статьи). Минимальное входное напряжение 10В, на плате имеется подстроечный резистор, с помощью которого можно регулировать выходное напряжение, я установил напряжение на уровне 34В.

Схема стробоскопа своими руками

Для получения коротких вспышек света нужен генератор импульсов, я разработал его на основе микроконтроллере PIC12F675. Программа написана на ассемблере, скачать можно в конце статьи. Ниже представлена схема стробоскопа своими руками:

В схеме имеется два переменных резисторам R2, R3, для регулировки частоты и длительности импульсов соответственно. Полевой транзистор VT2 коммутирует светодиодную матрицу. Частота регулируется от 28 до 100 Гц, длительность от 50 до 500 мкс, этих пределов достаточно для наблюдения стробоскопических эффектов. При увеличении длительности импульсов, общая картина эффекта смазывается, из-за того что объект значительно смещается за время вспышки. Для качественного наблюдения эффектов, нужно уменьшать длительность импульсов, но при этом будет падать освещенность.

Генератор собран на односторонней печатной плате, все элементы стробоскопа закреплены на текстолитовой пластине. Светодиод прикреплен к прямоугольной алюминиевой пластине, которая выступает в качестве радиатора. Мощность, выделяемая на матрице во время работы стробоскопа невелика, так как импульсы имеют малую длительность. Для питания стробоскопа я использовал блок питания на 12В и 2А, максимальный ток потребления составил 0,4А.

В качестве генератора также можно использовать готовый модуль, который можно приобрести в Китае (ссылка в конце статьи). Модуль имеет ЖК-дисплей, отображающий параметры сигнала, и кнопки, с помощью которых можно регулировать частоту импульсов и коэффициент заполнения в процентах. Для частоты 50 Гц минимальная длительность импульса составит 200 мкс (коэфф. заполнения 1%), для 100 Гц соответственно 100мкс (коэфф. заполнения 1%), что в принципе достаточно для наблюдения стробоскопических эффектов.

С помощью стробоскопа собранного своими руками я наблюдал эффект остановки лопастей вентилятора, о чем писал выше. Кроме этого, можно зажать в патроне дрели табличку с надписью, и также наблюдать ее остановку или медленное вращение.

Еще один интересный стробоскопический эффект – это левитация воды. Для его наблюдения я дополнительно приобрел в Китае электромагнитный насос высокого давления от кофемашины, мощностью 56 Вт (ссылка в конце статьи). Питается насос переменным напряжением 220В. Главной особенностью насоса является то, что он перекачивает воду отдельными порциями с частотой сети 50 Гц. Если направить свет стробоскопа на падающую струю воды от насоса, то можно увидеть висящие в воздухе капли воды, просто невероятное зрелище. Регулируя частоту вспышек можно добиться плавного движения капель вниз или вверх, при этом капли возвращаются обратно в насос, как будто перемещаются назад во времени.

Также с помощью стробоскопа можно увидеть колебания диффузора динамической головки. Для этого я взял низкочастотный динамик 35гдн-1-8 и подал на него переменное напряжение 7В от обычного понижающего трансформатора. При этом диффузор колеблется с частотой сети 50 Гц.

Собрать стробоскоп своими руками не составляет труда, схема достаточно простая. Все стробоскопические эффекты, которые я повторил, можно посмотреть в видеоролике ниже:

Комплектующие для сборки стробоскопа:
Повышающий модуль 150 Вт
Светодиодная матрица 100 Вт
Электромагнитный насос 56 Вт
Электромагнитный насос 16 Вт
Модуль генератора ШИМ

Левитация капель воды

Для более качественного наблюдения левитации капель воды, я собрал установку на основе аквариумного мембранного насоса, так как электромагнитный насос от кофемашины не предназначен для длительной работы, и сильно нагревается. В отличие от обычного насоса с крыльчаткой, мембранный насос перекачивает воду отдельными порциями, что как раз и нужно для реализации эффекта левитации капель воды. Ниже в видеоролике я подробно рассказал о том, как собрать подобную установку:

Ниже представлена обновленная схема стробоскопа для наблюдения эффекта левитации капель воды, с возможностью регулировки оборотов насоса:

Прошивка
Мембранный насос
Обновленная печатная плата в формате Sprint Layout 6

Последние записи:

radiolaba.ru

Стробоскопы своими руками — Лада 21099, 1.6 л., 2004 года на DRIVE2

Делать было нечнго, решил смамтерить стробоскопы, давно хотел такую тему, ещё давно видел свадебный картеж и у всех машин фары и туманки моргали поочерёдно, вечером смотрелось красиво, в магазинах такая штука дороговатая, находил в интернете самую дешевую за 1000р но в Перми такого не видел…Короче решил сделать сам, перечитал тонны статей, кучу схем насобирал, но ничего работать не хоте, ну вот уже отчаявщись решил забросить эту затею, просто вечером сидел дома подключил разобранную релюшку к акуму, и к лампочке, сидел смотрел как она работает и вдруг меня посетила одна мысль, она мне слазу же показалась бредовой но я решил проверит)) короче в релле есть язычек который ходит туда сюда, от одного контакта идёт плюс на лампочку, а с другой стороны просто железка, вот я и подумал если на язычке плюс, значит когда он касается железки там тоже появляется плюс, ) взял и припоял к ней проводок, и воаля всё заработало как я и хотел))сначала загорается одна лампочка, гаснет, затем другая, и т.д. всял светодиодные ленты красную и синюю всё припоял подключаю, не работает, думаю вот беда.))начал смотреть, потом опять пришла бредовая мысль подключить к одному из выходов обычную лампочку накаливания, и хлоп, всё заработало))) так всё и собрал лампочку прицепил под капот, как будет тёплая погода выведу её в салон, как индикатор)) ну это пока пробный вариант, ещё много хочу переделать, пока думаю как)) хочу поставить переменный резистор, чтоб регулировть время интервала, ну подсветить хочу как ни будь по другому, но это всё летом, зимой не охота возиться))
.
Если кому интересно, мне понадобилось:
релле поворотов,
паяльник
две ленты по 15 см красная и синяя
провода,
кнопочка( взял от туманок)
клемники для релле
лампочка накаливания, (взял из плафона, которая в центре салона)
и мозги конечно же включать пришлось))

Включены габариты.

только скробоскопы
Светит не очень потому что ленты пожалел, Ближе к теплу разберу фару, и приклею ленту по контуру фары…

www.drive2.ru

Стробоскоп для установки углов зажигания своими руками — Лада 2101, 1979 года на DRIVE2

Собрал стробоскоп своими руками, поскольку в нем имеется большая потребность в периодическом использовании. Купить дорого, ценообразование на приборы сумасшедшее, начинаются они от 500 гривен, но это еще не самое страшное, здесь имеется один огромный минус который обобщает практически все коммерческие изделия — это газоразрядная лампа ИФК-120 и ее аналоги, она имеет малый ресурс.
Стробоскоп многофункционален, по нему можно легко с мельчайшей точностью выставить начальное зажигание, отследить угол опережения, объективно оценить состояние всего механизма ГРМ на предмет люфтов, отследить динамику угла опережения при прогазовках для настройки натяжки контр грузов трамблера о которых мало кто вообще знает, и тем более делает.
Цели работы ясны, необходимо собрать не дорогостоящее, и в то же время устройство с большим ресурсом. Выбор естественно упал на светодиодную схему, которую привожу ниже.
Для сборки понадобится:
1. Четко обозначенные на схеме детали
2. Китайский фонарик на 3 батарейки
3. Кусок антенного провода, прищепка, изолента, два зажима крокодил, провод гибкий ПВ-3
Бюджет готового устройства составил 35 гр. при стоимости фонаря 18 гр.

1. Принципиальная схема устройства

2. Цоколевка кт315

3, Цоколевка кп103е

4, Цоколевка кт814

Схема собирается навесным монтажом, после изолируется и укладывается в фонарь с отводом питающих и сигнального кабеля. Делается это все примерно за пол часа.

Цена вопроса: 35 грн

www.drive2.ru

Лада 4×4 3D Гранатовая Черепашка › Бортжурнал › Стробоскоп для установки угла опережения зажигания своими руками.

Полный размер

16

После очередной возни с машиной, сбился уоз. Пометку на распределителе, как всегда не сделал, — забыл. Выставленного на слух угла явно было много, была детонация. А уменьшая угол, былой тяговитости так и не добился. У знакомых стробоскопа не нашлось. Покупкой нового озадачился, но после похода по магазинам желание отпало, платить за «фонарик» 1000 деревянных! Совсем уже спекулянты оборзели!
После поиска вариантов выхода из данной ситуации, решил сделать его сам! Единственная беспроблемная схема с простотой монтажа и без различной настройки, был автомобильный стробоскоп из лазерной указки автор: «Радио» 2000г. №9 «Светодиодный автомобильный стробоскоп» П. Беляцкий. «Радио» 2004г. №1 «Автомобильный стробоскоп из лазерной указки» Н. Заец.

1

Так его в последнее время перерисовали для более удобного чтения.

2

Ища сведения о работоспособности данной схемы, наткнулся на блог EverGrand У него выложена «печатка» в SL6, для сведения и последующего травления на плате, с очень компактной компоновкой

Полный размер

Печатка от EverGrand

СПАСИБО ЕМУ ОГРОМНОЕ! Очень приятный и отзывчивый парень! Довелось с ним пообщаться, по причине постоянной подачи напряжения на транзисторы (стробоскоп постоянно горел при подключении к аккумулятору).
Причина была не в схеме, а в нерабочих микросхемах К561ЛЕ5. Коих клепают «узкоглазые» без проверки! Заработала только третья! Купленная микросхема!

Полный размер

3

Что потребуется для сборки:
1. Микросхема — К561ЛЕ5 (или аналог HCF4001BE)
Транзисторы:
2. КТ315А — 1 шт.
3. КТ815А — 1 шт.

Резисторы:
4. 15к — 1 шт.
5. 3к — 1 шт.
6. 100к — 1 шт.
7. 4,7к — 1 шт.
8. 430 Ом — 1 шт. (я поставил 100 Ом, так как с предыдущим светил тускло)
9. 1к — 1 шт.

Конденсаторы:
10. 68 pF — 1 шт.
11. 3300 pF — 1 шт.

12. Кабель антенный для телевизора.
13. Прищепка
14. Светодиоды в различном исполнении.

Полный размер

4

Переводил используя технологию «ЛУТ»,

Полный размер

6

Полный размер

7

Полный размер

8

после травил,

Полный размер

9

Полный размер

10

Полный размер

11

Полный размер

Кт 315 должен быть с подобным обозначением, дабы не ошибиться с кт 361 (очень похожи, но последний имеет Структуру p-n-p)

сверлил, паял 🙂

При воспроизведении данного устройства, очень внимательно относитесь к микросхемам! Как показал опыт, их брак очень велик!

Полный размер

Виновник

Получившееся изделие:

Полный размер

14

Полный размер

15

www.drive2.ru

схема, как сделать светодиодный маяк своими руками

Устройство, воспроизводящее непрерывный световой поток в импульсном молниеподобном режиме, применяется в различных областях – от индикации системы зажигания до подсветки дискотек и сигнальных устройств спецавтомобилей.

Рассмотрим, как своими руками сделать стробоскоп на светодиодах, как выглядит его схема и печатная плата, какие необходимые инструменты и компоненты для этого понадобятся, из каких этапов состоит сборка электроники, а также какие другие дополнительные процедуры понадобятся для приведения устройства в работоспособное состояние.

Необходимые инструменты

Для изготовления стробоскопа на базе светодиодов своими руками понадобится следующий набор инструментов и приспособлений:

  1. Измерительное устройство.
  2. Набор отверток.
  3. Плоскогубцы.
  4. Паяльная станция или паяльник с необходимыми компонентами.
  5. Дрель или шуруповерт.
  6. Нож по дереву.
  7. Фломастер.
  8. Наждачка.

Важно! При внедрении в схему стробоскопа очень мощных светодиодов возникающие вспышки света могут негативно сказаться на зрении. Поэтому в ходе работы устройства нужно исключить прямой зрительный контакт с подобным светоисточником, например, установив матовый рассеиватель.

Схема и печатная плата

Сделать стробоскоп на светодиодах можно по нескольким схемам. Одной из самых простых и доступных является следующая:

svetilnik.info

Сообщества › Кулибин Club › Блог › Стробоскоп для установки угла опережения зажигания своими руками.

Подробнее у меня в Бортжурнале

После очередной возни с машиной, сбился уоз. Пометку на распределителе, как всегда не сделал, — забыл. Выставленного на слух угла явно было много, была детонация. А уменьшая угол, былой тяговитости так и не добился. У знакомых стробоскопа не нашлось. Покупкой нового озадачился, но после похода по магазинам желание отпало, платить за «фонарик» 1000 деревянных! Совсем уже спекулянты оборзели!
После поиска вариантов выхода из данной ситуации, решил сделать его сам! Единственная беспроблемная схема с простотой монтажа и без различной настройки, был автомобильный стробоскоп из лазерной указки автора Н. ЗАЕЦ «Светодиодный автомобильный стробоскоп» («Радио», 2000, № 9).

Так его в последнее время перерисовали для более удобного чтения.

Ища сведения о работоспособности данной схемы, наткнулся на блог EverGrand У него выложена «печатка» в SL6, для сведения и последующего травления на плате, с очень компактной компоновкой

СПАСИБО ЕМУ ОГРОМНОЕ! Очень приятный и отзывчивый парень! Довелось с ним пообщаться, по причине постоянной подачи напряжения на транзисторы (стробоскоп постоянно горел при подключении к аккумулятору).
Причина была не в схеме, а в нерабочих микросхемах К561ЛЕ5. Коих клепают «узкоглазые» без проверки! Заработала только третья! Купленная микросхема!

Что потребуется для сборки:
1. Микросхема — К561ЛЕ5 (я брал аналог HCF4001BE)Транзисторы:
2. КТ315А — 1 шт.
3. КТ815А — 1 шт.

Резисторы:
4. 15к — 1 шт.
5. 3к — 1 шт.
6. 100к — 1 шт.
7. 4,7к — 1 шт.
8. 430 Ом — 1 шт. (я поставил 100 Ом, так как с предыдущим светил тускло)
9. 1к — 1 шт.

Конденсаторы:
10. 68 pF — 1 шт.
11. 3300 pF — 1 шт.

12. Кабель антенный для телевизора.
13. Прищепка
14. Светодиоды в различном исполнении.

Переводил используя технологию «ЛУТ», после травил, сверлил, паял 🙂

При воспроизведении данного устройства, очень внимательно относитесь к микросхемам! Как показал опыт, их брак очень велик!

Получившееся изделие:

www.drive2.ru

Светодиодные стробоскопы своими руками: схема и детали

В этой статье мы узнаем, как создавать стробоскопические источники света.

Что такое стробоскопическое освещение

Во многих голливудских боевиках мы видим использование погони за полицейскими машинами с красно-синими верхними лампами, мигающими самым необычным и интересным образом. Эти эффектные световые эффекты производятся стробоскопическим устройством или стробоскопами, которые также называют короткими вспышками. Устройство генерирует короткие импульсы высокой интенсивности ослепительного света. Частота этих импульсов может быть регулируемой. Фактически, именно стробоскопы, используемые в полицейских машинах, делают полицейские машины и фургоны настолько привлекательными и интригующими для общего взгляда.

Вы также найдете использование этих огней на дискотеках, рейв-вечеринках и т.д., чтобы сделать атмосферу вечеринки более сенсационной. Другие серьезные применения стробоскопов включают изучение движения быстро движущихся объектов.

Как правило, эти огни производятся путем быстрых циклов зарядки / разрядки внутри ксеноновой газовой трубки.

Замена ксеноновой трубки на светодиоды

Современные светодиоды высокой яркости могут излучать такой же яркий и интенсивный свет, как и обычные ксеноновые трубки. Кроме того, стробоскопы, состоящие из ксеноновых трубок или ламп накаливания, требуют очень высокого напряжения и высокого тока соответственно для работы. Светодиодные стробоскопы, напротив, требуют сравнительно незначительной мощности и отличаются высокой надежностью. Они бывают разных цветов и поэтому стали более предпочтительными. Давайте продолжим и посмотрим, как мы можем построить стробоскопы, используемые в полицейских машинах, с помощью простого строительного проекта.

Список деталей

  • IC 4017 = 1 шт.
  • IC 4093 = 1 шт.
  • R3 = 150 Ом, Вт, CFR
  • R1 и R2 = 100 К, Вт, CFR
  • VR1 и VR2 = 1 M
  • С1 и С2 = 470 нФ

Описание схемы

Описание схемы можно понять с помощью следующих пунктов:

  • Ворота N1 и N2 настроены как простые генераторы. Они создают альтернативную логику hi и логику lo на своих выходах. Они также известны как тактовые импульсы.
  • Синхросигнал от генератора N1 подается на тактовый вход IC 4017.
  • Эти тактовые сигналы преобразуются в последовательные высокие логические импульсы с помощью IC 4017 через свои выходные контакты в порядке 3, 2, 4 и 7. Вы можете обратиться к одной из моих предыдущих статей, касающихся выводов IC 4017 для простоты строительства.
  • Посмотрев на принципиальную схему, вы обнаружите, что общая катодная точка всех светодиодов подключена к выходу другого генератора (N2).
  • Это делает схему очень интересной. Светодиоды вынуждены мигать с высокой частотой (регулируемой) одновременно, поскольку они последовательно смещаются на выходах IC 4017. Проще говоря, группа светодиодов предназначена для одновременного мигания и «запуска». Этот эффект на самом деле ответственен за то, чтобы создать реальное полицейское подобие стробоскопического света.
  • Эффекты «Мигание» настраиваются с помощью дискретных потенциометров. Они могут быть оптимизированы различными способами, чтобы получить визуально богатые образцы строба.

Эта схема может использоваться в качестве светодиодного стробоскопа во время веселых встреч в залах или домах для улучшения настроения на вечеринке. Он также может быть использован в транспортных средствах для привлечения внимания, но учтите, что в некоторых странах действие может быть незаконным, и от властей может потребоваться предварительное разрешение.

meanders.ru

СТРОБОСКОП СВОИМИ РУКАМИ

      

   Зачем нужен стробоскоп? Автолюбитель, с помощью стробоскопа сможет в течение нескольких минут проверить и отрегулировать зажигание на своем автомобиле, а также проверить работоспособность центробежного и вакуумного регуляторов опережения. Представляется интересным, спаять такой прибор своими руками. Конечно импульсные лампы обеспечивают высокую яркость вспышек, но у них ограниченный срок службы, поэтому выбор пал на светодиоды. LED приборы служат очень долго, но яркость их свечения меньше, что вынуждает использовать в излучателе группу из нескольких штук. 

   Для синхронизации вспышек с моментом ВМТ использован индуктивный датчик. Такой датчик стабильнее емкостного. Принципиальная схема стробоскопа показана на рисунке. Его основа – микроконтроллер. Контроллер обеспечивает защиту светодиодов от повреждения в случае аварийного превышения напряжения питания. 

   Максимально допустимый ток — 1 А. Защиту обеспечивает микроконтроллер, контролируя напряжение питания. Через делитель напряжения R3, R4 напряжение, пропорциональное питанию, подается на вход PB1 микроконтроллера. Номиналы делителя подобраны так, что при превышении значения 18 В контроллер прекращает формирование импульсов, предохраняя светодиоды от повреждения. Диод VD1 защищает стробоскоп от ошибочной перемены полярности напряжения питания. 

   В неподвергавшейся программированию микросхеме записан калибровочный байт, который должен остаться неизменным. Если микросхема подвергалась программированию или стиранию, следует вновь считать калибровочный байт в программаторе и записать его в старший и младший разряды слова по адресу $1FF. В файл программы калибровочный байт не включен, т.к. он индивидуален для каждого экземпляра микроконтроллера. Прошивка для микроконтроллера и чертёж печатной платы стробоскопа в архиве. Транзистор BUZ71A можно заменить аналогичным полевым транзистором с допустимым импульсным током стока не менее 3А, например IRLZ14, IRL510, IRL530N. Светодиод — любой мощный.

   Катушка стробоскопа мотается на кольцевом феррите с внутренним диаметром 12 мм 2000НМ. Наружный диаметр не критичен, а внутренний должен превышать диаметр высоковольтного провода к свече зажигания на несколько миллиметров. Расколоть кольцо такого размера не сложно, но можно приобрести два одинаковых кольца и сточить половину каждого из них на наждаке, добиваясь по возможности плотного, с минимальным зазором, прилегания торцов получившихся полуколец. Потом нужно намотать на нем катушку из 100 витков провода ПЭВ-2 диаметром 0,1…0,2 мм. Половинки датчика вклеивают в углубления губок бельевой прищепки подходящего размера с помощью силиконового автогерметика. Выводы катушки подпаивают к двухпроводному экранированному кабелю длиной около метра, экранирующую оплетку припаивают к корпусу зажима. Для самодельного автомобильного стробоскопа подойдет подходящий по размерам корпус от фонарика.  

   Размеры печатной платы стробоскопа могут быть еще меньше, если использовать микроконтроллер, полевой транзистор и резистор R6 в корпусах для поверхностного монтажа. Стробоскоп не требует налаживания. Убедиться в его работоспособности можно, если отпаять от платы датчик и замкнуть точку соединения резисторов R1 и R2 с цепью питания +14 В. В момент замыкания светодиод кратковременно вспыхнет. Если на работающем двигателе прибор работает плохо, снимите зажим с датчиком с высоковольтного провода и разверните его. Эдуард Я.

   Обсудить статью СТРОБОСКОП СВОИМИ РУКАМИ

ТРЁХФАЗНЫЙ МУЛЬТИВИБРАТОР

      Самой первой конструкцией новичков является мигалка на двух светодиодах, и основа такой мигалки — мультивибратор.

radioskot.ru

Делаем простой стробоскоп для установки зажигания своими руками

Светодиодный стробоскоп для установки зажигания позволяет быстро и с высокой точностью выставлять оптимальный угол опережения зажигания (УОЗ) в автомобиле. Данный параметр играет важную роль в корректной работе двигателя. Небольшое смещение в момент зажигания приводит к потере мощности, вследствие возросшего расхода топлива и перегрева двигателя.

Несмотря на большой ассортимент промышленно выпускаемых приборов для проверки и установки УОЗ, актуальность создания стробоскопа своими руками не потеряла смысл и в наши дни. Представленная схема самодельного стробоскопа для автомобиля не требует наладки после сборки и изготавливается из доступных деталей.

Принципиальная схема стробоскопа

Схема разработана и представлена в девятом издании журнала «Радио» в далеком 2000 году. Однако, благодаря своей простоте и надежности, остается актуальной и в наши дни.

В принципиальной электрической схеме стробоскопа для авто можно условно выделить 4 части:

  1. Цепь питания, состоящая из выключателя SA1, диода VD1 и конденсатора С2. VD1 защищает элементы схемы от ошибочной смены полярности. С2 блокирует частотные помехи, предотвращая сбои в работе триггера. Для подачи и отключения питания используется выключатель SA1, для этого подойдет любой компактный выключатель или тумблер.
  2. Входная цепь, которая состоит из датчика, конденсатора С1 и резисторов R1, R2. Функцию датчика выполняет зажим «крокодил», который закрепляется на высоковольтном проводе первого цилиндра. Элементы С1, R1, R2 представляют собой простейшую дифференцирующую цепь.
  3. Микросхема триггера, собранная по схеме двух однотипных одновибраторов, которые формируют на выходе импульсы заданной частоты. Частотозадающими элементами являются резисторы R3, R4 и конденсаторы С3, С4.
  4. Выходной каскад, собранный на транзисторах VT1-VT3 и резисторах R5-R9. Транзисторы усиливают выходной ток триггера, что отражается в виде ярких вспышек светодиодов. R5 задаёт ток базы первого транзистора, а R9 – исключает сбои в работе мощного VT3. R6-R8 ограничивают ток нагрузки, протекающий через светодиоды.

Принцип работы

Схема стробоскопа питается от автомобильного аккумулятора. В момент замыкания выключателя SA1, триггер DD1 переходит в исходное состояние. При этом на инверсных выходах (2, 12) появляется высокий потенциал, а на прямых (1, 13) – низкий потенциал. Конденсаторы С3, С4 заряжены через соответствующие резисторы.

Импульс с датчика, пройдя через дифференцирующую цепь, поступает на тактовый вход первого одновибратора DD1.1, что приводит к его переключению. Начинается перезаряд С3, который через 15 мс заканчивается очередным переключением триггера. Таким образом, одновибратор реагирует на импульсы с датчика, формируя на выходе (1) прямоугольные импульсы. Длительность выходных импульсов с DD1.1 определяется номиналами R3 и С3.

Второй одновибратор DD1.2 работает аналогично первому, уменьшая длительность импульсов на выходе (13) в 10 раз (примерно до 1,5 мс). Нагрузкой для DD1.2 служит усилительный каскад из транзисторов, которые открываются на время импульса. Импульсный ток через светодиоды ограничен исключительно резисторами R6-R8 и в данном случае достигает величины 0,8 А.

Не стоит пугаться столь большого значения тока. Во-первых, его импульс не превышает 1 мс, со скважностью в рабочем режиме не менее 15. Во-вторых, современные светодиоды обладают гораздо лучшими техническими характеристиками в сравнении с их предшественниками из 2000 года, когда эта схема впервые получила практическое применение. Тогда нужно было поискать светодиоды с силой света в 2000 мкд. Сейчас белый LED (от англ. Light-emitting diode) типа C512A-5 мм от компании Cree с углом рассеивания 25° способен выдать 18000 мкд при постоянном токе в 20 мА. Поэтому использование сверхъярких светодиодов позволит значительно снизить ток нагрузки путём увеличения сопротивления R6-R8. В-третьих, время пользования стробоскопом обычно не превышает 5-10 минут, что не вызывает перегрев кристаллов излучающих диодов.

Печатная плата и детали сборки

Самодельный стробоскоп для установки зажигания можно собрать как на недорогих отечественных радиоэлементах, так и на более прецизионных импортных элементах. Ниже представлена плата с применением отечественных компонентов для штыревого монтажа.

Плата в файле Sprint Layout 6.0: plata.lay6

Диод VD1 – КД2999В или любой другой с малым падением прямого напряжения. Конденсатор С1 должен быть высоковольтным с емкостью в 47 пФ и напряжением 400 В. Конденсаторы С2-С4 неполярные серии КМ-5, К73-9 на 0,068 мкФ 16 В. Все резисторы, кроме R4, типа МЛТ или планарные с номиналами, указанными на схеме. Подстроечный резистор R4 типа СП-3 или СП-5 на 33 кОм.

Триггер ТМ2 лучше использовать 561 серии, которая отличается высокой помехоустойчивостью и надёжностью. Но можно заменить его микросхемой 176 и 564 серии, учитывая их распиновку. Транзисторы VT1-VT2 подойдут КТ315 Б, В, Г или КТ3102 с большим коэффициентом усиления. Выходной транзистор – КТ815, КТ817 с любой буквенной приставкой. Светодиоды HL1-HL9 лучше взять сверхъяркие с малым углом рассеивания. Их располагают на отдельной плате по три в ряд. При отсутствии каких-либо деталей схемы их можно заменить более современными аналогами, немного усовершенствовав плату.

Готовую плату управления стробоскопа и плату со светодиодами удобно разместить в корпусе переносного фонарика. При этом необходимо предусмотреть отверстие в корпусе под регулятор R4, а в качестве SA1 можно использовать штатный выключатель.

Настройка

В схеме установлен подстроечный резистор R4, регулировкой которого можно добиться нужного визуального эффекта. Вращая ручку регулятора можно наблюдать, что уменьшение импульса тока ведёт к недостатку освещенности меток, а увеличение – к размытости. Поэтому во время первого запуска стробоскопа необходимо подобрать оптимальную длительность вспышек.

Длина экранированного провода от печатной платы к датчику не должна превышать 0,5 м. В качестве датчика подойдет 0,1 м медного проводника, припаянного к центральной жиле экранированного провода. В момент подключения его наматывают на изоляцию высоковольтного провода первого цилиндра автомобиля, делая 3 витка. Для повышения помехоустойчивости намотку производит максимально близко к свече. Вместо медного проводника можно взять зажим типа «крокодил», который также следует припаять к центральной жиле, а его зубья слегка загнуть внутрь, чтобы не повредить изоляцию.

Установка УОЗ стробоскопом

Прежде чем рассмотреть работу автомобильного стробоскопа, нужно понять суть стробоскопического эффекта. Если движущийся в темноте объект на мгновение осветить вспышкой, то он будет казаться застывшим в месте, где произошла вспышка. Если на вращающееся колесо нанести яркую метку и освещать его яркими вспышками, совпадающими по частоте с частотой вращения колеса, то в момент вспышек можно зрительно фиксировать местоположение метки.

Перед регулировкой момента зажигания автомобиля наносят две метки: подвижную на коленчатом валу (маховике) и стационарную – на корпусе двигателя. Затем присоединяют датчик, подают питание на стробоскоп и включают двигатель в режим холостого хода. Если во время вспышек метки совпадают, то УОЗ выставлен оптимально. В противном случае следует произвести корректировку до полного их совпадения.

Представленный стробоскоп для установки зажигания, собранный своими руками, позволит за несколько минут отладить систему зажигания автомобиля. В результате корректировки вырастет КПД двигателя и увеличится срок его службы.

ledjournal.info

Стробоскоп своими руками | RadioLaba.ru

Стробоскоп представляет собой устройство для воспроизведения коротких повторяющихся вспышек света. Обычно применяется на дискотеках, концертах, в качестве светодинамической установки. В этой статье я расскажу, как сделать стробоскоп своими руками для наблюдения впечатляющих стробоскопических эффектов.

Если освещать быстрые периодические процессы стробоскопом, то можно наблюдать так называемый стробоскопический эффект, эта зрительная иллюзия, возникающая, когда частота вспышек света приближается к частоте периодического процесса. Для примера можно осветить стробоскопом лопасти вращающегося вентилятора, при совпадении частоты вспышек света с частотой вращения вентилятора, нам будет казаться, что лопасти неподвижны или вращаются очень медленно. Это происходит из-за того, что лопасти вентилятора делают один полный оборот между двумя вспышками света, и мы всегда видим одно и то же положение лопастей в пространстве.

Стробоскопический эффект может возникнуть во время съемки видео, при совпадении частоты съемки кадров видеокамеры и частоты периодического процесса. В результате чего, на отснятом видеоролике можно увидеть неподвижное колесо движущегося автомобиля, или неподвижные лопасти летящего вертолета.

Еще одно полезное применение стробоскопа – это настройка угла опережения зажигания в двигателях внутреннего сгорания. Для этого вспышки света, синхронизируют с высоковольтным разрядом в свече зажигания, при этом благодаря стробоскопическому эффекту можно наблюдать метку на вращающемся маховике коленчатого вала двигателя.

Как правило, в стробоскопах применяются импульсные газоразрядные лампы, способные выдать большой световой поток, для создания ярких вспышек, так как вспышки имеют малую длительность. В настоящее время можно приобрести дешевые и достаточно яркие светодиодные матрицы. Я приобрел в Китае матрицу на 100Вт (ссылка в конце статьи), на основе которой буду собирать светодиодный стробоскоп.

Напряжение питания матрицы составляет 30-34В, ток потребления 3А. Для подключения матрицы я также приобрел в Китае повышающий преобразователь мощностью 150Вт (ссылка в конце статьи). Минимальное входное напряжение 10В, на плате имеется подстроечный резистор, с помощью которого можно регулировать выходное напряжение, я установил напряжение на уровне 34В.

Схема стробоскопа своими руками

Для получения коротких вспышек света нужен генератор импульсов, я разработал его на основе микроконтроллере PIC12F675. Программа написана на ассемблере, скачать можно в конце статьи. Ниже представлена схема стробоскопа своими руками:

В схеме имеется два переменных резисторам R2, R3, для регулировки частоты и длительности импульсов соответственно. Полевой транзистор VT2 коммутирует светодиодную матрицу. Частота регулируется от 28 до 100 Гц, длительность от 50 до 500 мкс, этих пределов достаточно для наблюдения стробоскопических эффектов. При увеличении длительности импульсов, общая картина эффекта смазывается, из-за того что объект значительно смещается за время вспышки. Для качественного наблюдения эффектов, нужно уменьшать длительность импульсов, но при этом будет падать освещенность.

Генератор собран на односторонней печатной плате, все элементы стробоскопа закреплены на текстолитовой пластине. Светодиод прикреплен к прямоугольной алюминиевой пластине, которая выступает в качестве радиатора. Мощность, выделяемая на матрице во время работы стробоскопа невелика, так как импульсы имеют малую длительность. Для питания стробоскопа я использовал блок питания на 12В и 2А, максимальный ток потребления составил 0,4А.

В качестве генератора также можно использовать готовый модуль, который можно приобрести в Китае (ссылка в конце статьи). Модуль имеет ЖК-дисплей, отображающий параметры сигнала, и кнопки, с помощью которых можно регулировать частоту импульсов и коэффициент заполнения в процентах. Для частоты 50 Гц минимальная длительность импульса составит 200 мкс (коэфф. заполнения 1%), для 100 Гц соответственно 100мкс (коэфф. заполнения 1%), что в принципе достаточно для наблюдения стробоскопических эффектов.

С помощью стробоскопа собранного своими руками я наблюдал эффект остановки лопастей вентилятора, о чем писал выше. Кроме этого, можно зажать в патроне дрели табличку с надписью, и также наблюдать ее остановку или медленное вращение.

Еще один интересный стробоскопический эффект – это левитация воды. Для его наблюдения я дополнительно приобрел в Китае электромагнитный насос высокого давления от кофемашины, мощностью 56 Вт (ссылка в конце статьи). Питается насос переменным напряжением 220В. Главной особенностью насоса является то, что он перекачивает воду отдельными порциями с частотой сети 50 Гц. Если направить свет стробоскопа на падающую струю воды от насоса, то можно увидеть висящие в воздухе капли воды, просто невероятное зрелище. Регулируя частоту вспышек можно добиться плавного движения капель вниз или вверх, при этом капли возвращаются обратно в насос, как будто перемещаются назад во времени.

Также с помощью стробоскопа можно увидеть колебания диффузора динамической головки. Для этого я взял низкочастотный динамик 35гдн-1-8 и подал на него переменное напряжение 7В от обычного понижающего трансформатора. При этом диффузор колеблется с частотой сети 50 Гц.

Собрать стробоскоп своими руками не составляет труда, схема достаточно простая. Все стробоскопические эффекты, которые я повторил, можно посмотреть в видеоролике ниже:

Комплектующие для сборки стробоскопа:
Повышающий модуль 150 Вт
Светодиодная матрица 100 Вт
Электромагнитный насос 56 Вт
Электромагнитный насос 16 Вт
Модуль генератора ШИМ

Левитация капель воды

Для более качественного наблюдения левитации капель воды, я собрал установку на основе аквариумного мембранного насоса, так как электромагнитный насос от кофемашины не предназначен для длительной работы, и сильно нагревается. В отличие от обычного насоса с крыльчаткой, мембранный насос перекачивает воду отдельными порциями, что как раз и нужно для реализации эффекта левитации капель воды. Ниже в видеоролике я подробно рассказал о том, как собрать подобную установку:

Ниже представлена обновленная схема стробоскопа для наблюдения эффекта левитации капель воды, с возможностью регулировки оборотов насоса:

Прошивка
Мембранный насос
Обновленная печатная плата в формате Sprint Layout 6

Как превратить любой свет в стробоскоп с помощью всего двух транзисторов

Если вам кажется, что стробоскопы очень интересны, но разочарованы тем фактом, что эти чудесные световые эффекты могут быть получены только с помощью сложной ксеноновой лампы, то, вероятно, вы ошибаетесь.

Очень возможно сделать любой свет стробоскопом, если у вас есть соответствующая схема управления, способная работать с различными осветительными приборами для создания желаемого эффекта стробоскопа.

В данной статье показано, как такая базовая схема, как мультивибратор, может быть модифицирована различными способами и сделана совместимой с обычными лампами, лазерами, светодиодами для получения впечатляющих световых импульсов.

Стробоскоп можно использовать для предупреждения, научного анализа или в качестве развлекательного устройства, независимо от области применения, эффекты просто ослепительны. Фактически, можно сделать любой свет стробоскопом с помощью соответствующей схемы управления. Объясняется электрическими схемами.

Разница между миганием и стробированием

Мигающий или мигающий свет действительно выглядит довольно привлекательно, и именно поэтому они используются во многих местах в качестве предупреждающих устройств или для украшения.

Однако, в частности, стробоскопический свет можно также рассматривать как мигающий свет, но он однозначно отличается от обычных световых мигалок. В отличие от них в стробоскопе, схема включения / выключения настолько оптимизирована, что дает резкие, ослепляющие импульсные вспышки света.
Несомненно, почему их чаще всего используют в сочетании с быстрой музыкой, чтобы улучшить настроение вечеринки. В настоящее время зеленые лазеры широко используются в качестве стробирующих устройств в залах для вечеринок и собраний и стали горячими фаворитами среди нового поколения.
Будь то светодиоды, лазеры или обычная лампа накаливания, все это можно заставить мигать или, скорее, стробировать, используя электронную схему, способную производить необходимое импульсное переключение в подключенном осветительном элементе. Здесь мы увидим, как с помощью простой электронной схемы сделать любой свет стробоскопом.

Следующий раздел познакомит вас с деталями схемы. Давай пройдем через это.

Пульсация любого света для создания эффекта стробинга

В одной из моих предыдущих статей мы натолкнулись на симпатичную небольшую схему, способную создавать интересные эффекты стробирования на нескольких подключенных светодиодах.

Но эта схема подходит только для управления светодиодами малой мощности и поэтому не может применяться для освещения больших площадей и помещений.

Предлагаемая схема позволяет управлять не только светодиодами, но и мощными осветительными приборами, такими как лампы накаливания, лазеры, КЛЛ и т. Д.

На первой схеме показана простейшая форма схемы мультивибратора с транзисторами в качестве основных активных компонентов. Подключенные светодиоды можно заставить мигать, соответствующим образом отрегулировав два потенциометра VR1 и VR2.

ОБНОВЛЕНИЕ:

В этой статье я объяснил несколько схем транзисторных стробоскопов, однако показанная ниже конструкция является самой простой и проверена мной. Так что вы можете начать с этого дизайна и настроить его в соответствии со своими предпочтениями и предпочтениями.

Видеоиллюстрация

Обсуждаемая выше простая конструкция может быть дополнительно модифицирована, как описано ниже, для большего контроля и улучшенных выходных данных.

Вышеупомянутая схема образует основу для всех следующих схем посредством некоторых подходящих модификаций и дополнений.

Использование фонарика в качестве стробоскопа

Например, если вы хотите осветить и пульсировать с помощью небольшой лампы фонарика, вам просто нужно будет внести простые изменения, как показано на второй диаграмме.

Здесь, добавив силовой транзистор PNP и запустив его через коллектор T2, лампу фонарика легко заставить стробировать. Конечно, оптимальный эффект достигается только при правильной настройке двух горшков.

Как уже говорилось в предыдущем разделе, зеленые лазерные указки сейчас довольно популярны; проиллюстрированная схема показывает простой метод преобразования вышеуказанной схемы в пульсирующий зеленый стробоскоп лазерной указки.

Здесь стабилитрон вместе с транзистором работает как цепь постоянного напряжения, гарантируя, что на лазерную указку никогда не будет подаваться напряжение, превышающее его максимальное значение.

Это также гарантирует, что ток лазера никогда не может превышать номинальное значение.

Стабилитрон и транзистор работают как постоянное напряжение, а также как косвенный драйвер постоянного тока для лазера.

Использование лампы переменного тока 220 В или 120 В в качестве стробирующего света

На следующей схеме показано, как сетевую лампу переменного тока можно использовать в качестве источника стробирующего света с использованием указанной выше схемы.Здесь симистор образует главный переключающий компонент, получающий необходимые импульсы затвора от коллектора Т2.

Таким образом, мы видим, что с помощью вышеупомянутых схемных решений становится очень легко превратить любой свет в стробоскоп, просто выполнив соответствующие модификации в простой транзисторной схеме, как объяснено в приведенных выше примерах.

Список деталей
  • R1, R4, R5 = 680 Ом,
  • R2, R3 = 10K
  • VR1, VR2 = 100K потенциометра
  • T1, T2 = BC547,
  • T3, T4 = BC557
  • C1, C2 = 10 мкФ / 25 В
  • Симистор = BT136
  • Светодиоды = по выбору

Цепь полицейского стробоскопа

Для медленной нестабильности используйте следующие детали:

  • R1, R4 = 680 Ом
  • R2, R3 = 18K
  • C1 = 100 мкФ
  • C2 = 100 мкФ
  • T1, T2 = BC547

Для быстрой нестабильной работы используйте следующие детали:

  • R1, R4 = 680 Ом
  • R2, R3 = 10K
  • предустановка = 100K
  • C1 = 47 мкФ
  • C2 = 47 мкФ
  • T1, T2 = BC547

Схема стробирования светодиода высокой интенсивности

Схема строба светодиода высокой интенсивности

Стробоскопическое устройство должно производить регулярные вспышки света, и оно может создавать стробоскопический эффект
.Схема светодиодного строба высокой интенсивности, разработанная с таймером IC 555 и несколькими внешними компонентами. Здесь мы использовали белый светодиод мощностью 1 Вт для получения света высокой интенсивности.

Таймер IC 555 сконфигурирован как нестабильный мультивибратор, и он будет производить непрерывный прямоугольный импульс в зависимости от временного резистора и емкости синхронизирующего конденсатора.

Принципиальная схема

Необходимые компоненты

  1. IC 555
  2. Белый светодиод 1 Вт
  3. Переменный резистор 100 кОм
  4. Резистор 10 кОм, 10 Ом / 1 Вт каждый
  5. Конденсатор 0.1 мкФ, 0,01 мкФ на каждую
  6. Батарея

Этот белый светодиод мощностью 1 Вт будет иметь две клеммы, названные анодом (+) и катодом (-). Если вы хотите, чтобы эта схема работала непрерывно, используйте светодиодный радиатор со светодиодом мощностью 1 Вт.

Строительство и работа

Конструкция этой схемы начинается с таймера IC 555 и синхронизирующих элементов резистора R1 и RV1, затем конденсатора C1. Таймер IC Контакты 8 и 4 подключены к положительной клемме батареи, а контакт 1 — к отрицательной клемме питания, контакт 5 подключен к отрицательной клемме питания через конденсатор C2.Резистор R1, RV1 и конденсатор C1 подключены последовательно между разрядным контактом 7, пороговым контактом 6 и триггером 2. Выходной контакт 3 таймера IC 555 подключен к белому светодиоду мощностью 1 Вт через резистор R2.

Выходное время (t) = 0,693 (R1 + 2RV1) .C Здесь значение RV1 представляет собой текущее значение сопротивления позиции (потому что его переменный резистор), а не полное значение сопротивления RV1.

Зависит от значения элементов синхронизации, прямоугольный импульс включения и выключения, генерируемый таймером IC 555 (узнайте больше о нестабильном мультивибраторе 555), и выходной сигнал с контакта 3 подается на белый светодиод, теперь светодиод начинает мигать в соответствии с включением и ВЫКЛ импульсы.

Цепь светодиодного стробоскопа

с использованием таймера 555

В этом уроке мы покажем вам, как создать схему стробоскопа светодиода с использованием таймера 555 IC . Стробоскопический свет производит регулярные вспышки света для создания стробоскопического эффекта. В этой схеме мы будем использовать светодиод высокой интенсивности мощностью 1 Вт, чтобы эффект был четко виден. Для контроля частоты мигания светодиода воспользуемся потенциометром, подключенным к цепи.

[спонсор_1]

Аппаратные компоненты

Ниже приведены необходимые элементы оборудования для цепи светодиодного стробоскопа :

Оборудование для цепи светодиодного стробоскопа

Подключения

  1. Подключите контакты 4 и 8 к VCC.
  2. Подключите контакт 1 к GND.
  3. Добавьте конденсаторы C1 и C2, как показано на принципиальной схеме.
  4. Добавьте переменный резистор между контактами 6 и 7 .
  5. Подключите конденсатор 0,1 мкФ между контактами 2 и заземлением.
  6. Подключите конденсатор 0,01 мкФ между выводом 5 и GND
  7. Добавьте резистор 10 кОм между VCC и выводом 7 .
  8. Добавить светодиод высокой мощности на выходе Pin 3 .

[inaritcle_1]

Рабочее пояснение

ИС таймера 555 будет работать в этой схеме как нестабильный мультивибратор.На выходе он будет производить непрерывные прямоугольные импульсы. Эти волны будут включать и выключать светодиод, и продолжительность этого зависит от рабочего цикла прямоугольной волны. Мы можем изменить скорость мигания светодиода, повернув ручку потенциометра. Белый светодиод мощностью 1 Вт имеет два вывода: анод (+) и катод (-). Если вы хотите, чтобы эта схема работала непрерывно, используйте светодиодный радиатор со светодиодом.

Приложения

  • Стробоскопы часто используются для освещения самолетов, предотвращающих столкновения, на самих самолетах, а также на высоких зданиях.
  • Эти огни используются в ночных клубах и домах для развлечения или для создания спецэффектов.

Принципиальная схема

Схема светодиодного стробоскопа

[matched_content]

Fly Strobe

Fly Strobe

Стробоскоп Fly

Введение

Нам нужен был достаточно яркий стробоскоп, чтобы стимулировать определенные поведенческие режимы у плодовой мушки. Мы решили использовать светодиоды высокой интенсивности для создания маломощного стробоскопа низкого напряжения.

Схема

Схема представляет собой стандартный генератор импульсов, использующий два таймера 555 (в одном корпусе). Ориентировочная регулировка частоты 1-100 Гц, длительность импульса 1 мс-0,5 сек. В режиме одиночного импульса при нажатии кнопки запуска генерируется один импульс установленной ширины. Кнопка не дребезжит, поэтому иногда бывает два импульса. Переменный резистор слева регулирует частоту, а правый — ширину импульса. Цепь выдает 0.6 ампер на светодиод, что выше его рейтинга . Это означает, что длительные импульсы с высокой нагрузкой могут его сжечь. Зато очень яркий.

Печатная плата была разработана с использованием программного обеспечения ExpressPCB. Изображение платы ниже. Файл дизайна необходимо бесплатно загрузить с ExpressPCB (только для Windows). Следы наверху платы красные, а внизу зеленые. Значения компонентов указаны на желтом, но не напечатаны на плате, если вы пользуетесь самой дешевой услугой по производству плат.Фактически на одной производственной плате есть две копии схемы (см. Файл дизайна), поэтому вам нужно разрезать их ленточной пилой.

Список деталей:

  • Светодиод — это светодиод Cree XLamp ™ 7090WBL мощностью 1 Вт, заказанный в All Electronics, номер детали: LED-112 (синий свет) или LED-110 (белый).
  • BUZ71A — это N-канальный силовой полевой МОП-транзистор, заказанный у All Electronics, номер детали BUZ71A
  • IC представляет собой двойной таймер NE556, номер детали digikey.
    296-6504-5-НД, или
    номер детали digikey LM556CN-ND
  • Все детали для поверхностного монтажа — это детали размером 1206 от компании Digikey.Конденсаторы типа X7R из артикула комплекта
    PCC6-KIT-ND. Резисторы с допуском 5%, толстопленочные, из комплекта.
    номер детали CR1A-KIT-ND
    .
  • Переменные резисторы
    Потенциометры аудио конические jameco номер детали 255441; номер детали производителя
    RV24A-10-15R1-A100K
  • Кнопки и переключатели могут быть любыми небольшими переключателями малой мощности. Кнопка (триггер) должна быть нормально разомкнутой.
  • Батарейный блок состоял из 4 ячеек AA (номинальное напряжение 6 вольт).Держатель батареи был похож на номер детали digikey.
    Bh34AAW-ND.
  • Коробка — это коробка Speedy из АБС-пластика 5 «x2,5» x2 «, номер детали jameco 18913

Строительство

Припаяйте сначала компоненты для поверхностного монтажа, затем разъем для 556 ic. Вставьте на плату сквозной конденсатор 4,7 мкФ и полевой МОП-транзистор в последнюю очередь. Органы управления были установлены на передней панели, а затем подключены к плате. Маленькая пластиковая вставка удерживала батарейный блок на одном конце коробки.Коробка достаточно мала, чтобы печатная плата просто прижалась к дну коробки соединительными проводами. Чтобы поместиться в небольшую коробку, которую я использовал, полевой МОП-транзистор нужно было согнуть к правой стороне платы, как вы можете видеть на фотографии ниже.

Провода, идущие к элементам управления, были скручены для минимизации шума. ОДНАКО, может потребоваться поиграть с размещением проводов в гнездах, чтобы светодиод не загорался. При первом включении цепи будьте готовы к тому, что немедленно (<2 секунд) выключите ее, если светодиод горит постоянно.Светодиод быстро перегорит, если будет работать все время. Если светодиод всегда горит, перемещайте провода, пока светодиод не начнет мигать. Необходимо переставить провода при выключенном блоке . На этих фотографиях не показан резистор 10 Ом, 0,25 Вт, который соединяет схему со светодиодом. Добавление резистора (на телефонном разъеме) стабилизировало схему.

Держатель батареи был закреплен небольшой пластиковой полосой, вставленной в пазы по бокам коробки.

Светодиодный стробоскоп высокой яркости с использованием IC 555

Вот еще один полезный в повседневной жизни проект на самой популярной микросхеме NE555. В проекте светодиодного стробоскопа высокой яркости используется массив из 36 светодиодов высокой яркости. Преимущество проекта в том, что он питается от небольшого аккумулятора и очень эффективен. Переменный резистор сбоку позволяет изменять частоту мигания.

Описание схемы светодиодного стробоскопа высокой яркости с использованием микросхемы IC 555

Принципиальная схема светодиодного стробоскопа повышенной яркости приведена на рисунке 1.Вся схема построена на таймере IC NE555 (IC 1 ) или IC 1 как сердце схемы. IC 1 здесь используется в нестабильном режиме и генерирует импульс. Выход IC 1 получается на выводе 3 и передается на полевой МОП-транзистор T 1 . Светодиоды подключены к выходу MOSFET.

Для питания используется батарея PP3 9В. Когда переключатель SW 1 нажат в положение ON, таймер IC NE555 (IC 1 ) начинает генерировать импульс, который включает полевой МОП-транзистор и далее приводит в действие светодиоды.VR 1 здесь используется для регулировки яркости стробоскопа светодиодов.

Различные типы цепей стробоскопа с использованием ксеноновой лампы-вспышки, импульсной лампы, светодиодов и т.д., размещенные на сайте bestengineeringprojects.com, перечислены ниже: —

  1. DIY Схема стробоскопа
  2. Схема стробоскопа
  3. Стробоскоп с использованием Arduino
  4. Мощный стробоскоп с использованием Arduino.

ПЕРЕЧЕНЬ ДЕТАЛЕЙ СВЕТОДИОДНОГО СТРОБА ВЫСОКОЙ ЯРКОСТИ С ИСПОЛЬЗОВАНИЕМ IC 555

Резистор (полностью ¼-ватт, ± 5% углерода)
R 1 , R 2 = 10 кОм

VR 1 = 1 МОм

Конденсаторы
C 1 = 1 мкФ, 16 В (электролитический конденсатор)

C 2 = 10 нФ (керамический диск)

Полупроводник
IC 1 = NE555 (таймер IC)

T 1 = FQP27P06 (N-канальный MOSFET)

LED 1 — LED 36 = белый светодиод 500 мм, 20000 мед, I f 30 мА, V f = 3-3.3В

Разное
SW 1 = двухпозиционный переключатель SPST

B 1 = 9V PP3 Батарея

Нравится:

Нравится Загрузка …

Как построить светодиодные стробоскопы — объяснение забавного проекта

Что такое стробоскопические фонари

Во многих голливудских боевиках мы видим использование полицейских машин с красными и синими верхними фонарями, мигающими самым своеобразным и интересным образом.Эти гламурные световые эффекты создаются стробоскопическим устройством или стробоскопом, также называемым коротко стробоскопом. Устройство излучает короткие импульсы ослепляющего света высокой интенсивности. Частоту этих импульсов можно регулировать. Фактически, именно стробоскопы, используемые в полицейских машинах, делают полицейские машины и фургоны такими привлекательными и интригующими для обычного глаза.

Вы также найдете использование этих светильников на дискотеках, рейв-вечеринках и т. Д., Чтобы сделать атмосферу вечеринки более сенсационной.Другие серьезные применения стробоскопов включают изучение движения быстро движущихся объектов.

Обычно эти фонари производятся путем быстрых циклов зарядки / разрядки внутри ксеноновой газовой трубки.

В этой статье мы узнаем, как создавать стробоскопы и генерировать такой же эффект, как описано выше.

Замена ксеноновой лампы на светодиоды

Современные светодиоды высокой яркости могут давать такой же резкий и интенсивный свет, как и более обычные ксеноновые лампы. Более того, стробоскопы, состоящие из ксеноновых трубок или ламп накаливания, требуют для работы соответственно очень высокого напряжения и большого тока.Светодиодные стробоскопы, напротив, потребляют сравнительно небольшую мощность и очень надежны. Они бывают разных цветов и поэтому стали более предпочтительными. Давайте продолжим и посмотрим, как мы можем построить стробоскопы, используемые в полицейских машинах, с помощью простого строительного проекта.

Список деталей

R1 и R2 = 100 K, ¼ Вт, CFR

VR1 и VR2 = 1 M Пот. Линейный,

C1 и C2 = 470 нФ

Описание схемы

Описание схемы данной схемы можно понять по следующим пунктам:

  • Вентили N1 и N2 сконфигурированы как простые генераторы.Они производят на своих выходах альтернативную логику hi и логику lo. Они также известны как тактовые импульсы.

  • Тактовый сигнал от генератора N1 подается на тактовый вход IC 4017.

  • Эти тактовые сигналы преобразуются IC 4017 в последовательные импульсы высокой логики через свои выходные контакты в порядке 3, 2, 4 и 7. Вы можете обратиться к одной из моих предыдущих статей, посвященной выводам выводов IC 4017 для простоты конструкции.

  • Глядя на принципиальную схему, вы обнаружите, что общая катодная точка всех светодиодов соединена с выходом другого генератора (N2).

  • Это делает схему очень интересной. Светодиоды вынуждены мигать с высокой частотой (регулируемой) одновременно, поскольку они последовательно переключаются на выходах IC 4017. Проще говоря, группа светодиодов заставляется мигать и «бегать» или «преследовать» одновременно. Этот эффект на самом деле отвечает за создание настоящего полицейского стробоскопического сходства.

  • Эффекты «Погоня» и «Мигание» регулируются с помощью дискретных потенциометров. Их можно оптимизировать по-разному для получения визуально насыщенных стробоскопических паттернов.

Эту схему можно использовать в качестве светодиодных стробоскопов во время веселых встреч в залах или домах, чтобы улучшить настроение вечеринки. Его также можно использовать в транспортных средствах для привлечения внимания, но имейте в виду, что в некоторых странах это действие может быть незаконным, и может потребоваться предварительное разрешение от властей.

Нужна дополнительная информация о том, как создавать светодиодные стробоскопы? Не стесняйтесь делать пометки в своих комментариях. (Комментарии проходят модерацию. Они не появляются мгновенно.)

Изображение полицейской машины: https: // www.carpictures.com/media/images/400/09J4C262418825AF.jpeg

контактов IC 4093, Изображение предоставлено: https://3.bp.blogspot.com/_B8Dh3WXNvg0/S147HstII7I/AAAAAAAAEHQ/pV172+. gif

Выводы микросхемы 4017 Изображение предоставлено: https://www.syntax.com.tw/proddata/IC/IC-4093.JPG

Rave Image Кредит: https://www.mareksdjservices.com/Prom/photo2. jpg

led strobe light circuit — купить led strobe light circuit с бесплатной доставкой на AliExpress

Отличные новости !!! Вы находитесь в нужном месте для схемы светодиодных стробоскопов.К настоящему времени вы уже знаете, что все, что вы ищете, вы обязательно найдете на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта верхняя светодиодная схема стробоскопа станет одним из самых востребованных бестселлеров в кратчайшие сроки. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели схему светодиодного стробоскопа на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в схеме светодиодных стробоскопов и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время и проверьте купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести led strobe light circuit по самой выгодной цене.

Добавить комментарий

Ваш адрес email не будет опубликован.