Предохранители калина 1 люкс: Блок предохранителей Лада Калина: схема расположения, расшифровка, люкс

Содержание

Блок предохранителей Лада Калина: схема расположения, расшифровка, люкс

Сегодня у меня перегорел предохранитель прикуривателя, пришлось лезть и менять. Не нашёл внятной схемы на комплектацию ЛЮКС (98 лошадей, приоро-двигатель). Поэтому всё сфотографировал и СПЕЦИАЛЬНО подготовил этот материал.

Содержание

  • 1 Расположение блока предохранителей на Лада Калина
    • 1.1 Расшифровка

Блок предохранителей находится в салоне автомобиля слева от рулевой колонки. Там где блок управления светом. Доступ свободный, необходимо только потянуть на себя пластик. Для удобства можно отсоединить фишку управления светом, но это не обязательно.

Немного запылился.

Расшифровка

Расшифровка на картинке.

Подробная схема.

Предохранители
F1 ~~~~ блок управления иммобилизатором, выключатель аварийной сигнализации, комбинация приборов
F2 ~~~~ стеклоподъёмники
F3 ~~~~ выключатель аварийной сигнализации
F4 ~~~~ Стеклоочиститель
F5 ~~~~ Отопитель, блок управления электроусилителем
F6 ~~~~ Звуковой сигнал
F7 ~~~~ Комбинация приборов, освещение салона
F8 ~~~~ обогрев заднего стекла
F9 ~~~~ Габаритные огни (правые)
F10 ~~~~ Габаритные огни (левые)
F11 ~~~~ Блок управления иммобилизатором
F12 ~~~~ Ближний свет (правый)
F13 ~~~~ Ближний свет (левый)
F27 ~~~~ блок управления электроусилителем (большой красного цвета 50 A)
F28 ~~~~ блок управления системой ABS ( в данном случае пустое место, так как ABS не установлено)
F14 ~~~~ Дальний свет (правый)
F15 ~~~~ Дальний свет (левый)
F16 ~~~~ Противотуманные фары
F17 ~~~~ Противотуманные фары
F18 ~~~~ обогрев сидений
F19 ~~~~ АБС
F20 ~~~~ прикуриватель
F21 ~~~~ Блокировка заднего хода
F22 ~~~~ Блок управления электропакетом
F23 ~~~~ Резервный
F24 ~~~~ Резервный
F25 ~~~~ Резервный
F26 ~~~~ ABS

Реле
F1 ~~~~ омыватель фар
F2 ~~~~ включение цепи стеклоподъёмников
F3 ~~~~ включение стартера
F4 ~~~~ дополнительное (реле зажигания)
F5 ~~~~ указатели поворотов и аварийной сигнализации
F6 ~~~~ омыватель и очиститель ветрового стекла
F7 ~~~~ дальний свет
F8 ~~~~ звуковой сигнал
F9 ~~~~ передние противотуманные фары
F10 ~~~~ обогрев заднего стекла
F11 ~~~~ обогрев передних сидений
F12 ~~~~ резервное реле

Метки: Лада Калина

Блок предохранителей Калины

Проблемы с электрикой Калины встречаются также как и у любого другого автомобиля. Выяснять причины неисправностей принято с проверки предохранителей и реле.

Монтажный блок Калины

Монтажный блок реле и предохра­нителей располагается слева от рулевой колонки на панели прибо­ров. 

Перед заменой реле или предохраните­лей обязательно отсоедините минусовую клемму аккумулятора.

Предохранители монтажного блока
Обозначение предохранителя
(номинальный ток. А)
Защищаемые элементы
F1(10)Иммобилайзер, световые сигнализаторы и стрелочные указатели ком­бинации приборов, цепи выключателя и лампы света заднего хода, цепи указателей поворотов
F2 (30)Цепи электростеклоподъемников
F3 (10)Цепи аварийной сигнализации
F4 (20)Очиститель ветрового стекла, цепь выключателя обогрева заднего стекла
F5 (25)Электродвигатель отопителя, блок управления электроусилителем руля, омыватель ветрового стекла
F6 (20)Звуковой сигнал
F7 (10)Жидкокристаллический индикатор комбинации приборов, выключа­тель и лампы сигналов торможения, освещение салона
F8 (20)Элемент обогрева заднего стекла
F9 (5)Лампы габаритного света в правой блок-фаре и правом фонаре, лампа освещения вещевого ящика
F10 (5)Лампы габаритного света в левой блок-фаре и левом фонаре, сигнали­затор наружного освещения в комбинации приборов, лампы освеще­ния номерного знака
F11 (7,5)Цепи ламп противотуманного света в задних фонарях
F12 (7,5)Лампа ближнего света (правая блок-фара), мотор-редуктор корректора света правой блок-фары
F13 (7,5)Лампа ближнего света (левая блок-фара), мотор-редуктор корректора света левой блок-фары
F14 (10)Лампа дальнего света (правая блок-фара), сигнализатор дальнего света фар в комбинации приборов
F15 (10)Лампа дальнего света (левая блок-фара)
F16, 17 (10)Лампы противотуманных фар (опция)
F18 (15)Элементы подогрева сидений (опция)
F19 (10)Электрические цепи АБС (опция)
F20 (15)Нагревательный элемент прикуривателя
F21(10)Цепь блокировки заднего хода коробки передач
F22 (15)Блок управления охранной сигнализацией
F23Резерв
F24Резерв
F25Резерв
F26 (25)Электрические цепи АБС (опция)
F27 (5)Запасной
F28 (7,5)Запасной
F29 (10)Запасной
F30 (20)Запасной
F31(50)Электроусилитель руля
Реле монтажного блока
ОбозначениеНаименованиеЗапитываемые потребители
К1 (опция)Реле омывателя блок-фарЭлетродвигатель омывателя блок-фар
К2Реле стеклоподъемниковЭлектродвигатели стеклоподъемников
КЗРеле стартераТяговое реле стартера
К4Дополнительное релеВыключатель и обмотка реле обогрева заднего стекла, переключатель электродвигателя отопителя, переключатель очистителя и омывателя ветрового стекла
К5Реле-прерыватель указателей поворота и аварийной сигнализацииЛампы указателей поворота и аварийной сигнализации
К6Реле очистителя ветрового стеклаЭлектродвигатель очистителя ветрового стекла
К7Реле дальнего света блок-фарЛампы дальнего света блок-фар
К8Реле звукового сигналаЗвуковой сигнал
К9 (опция)Реле противотуманных фарЛампы противотуманных фар
К10Реле обогрева заднего стеклаЭлемент обогрева заднего стекла
К11 (опция)Реле подогрева сиденийЭлементы подогрева сидений
К12 (резерв)

Основной блок предохранителей Лада Калина

Цепи системы управления двигателем защищены тремя плавкими предохранителями, которые располагаются под крышкой в облицовке туннеля пола. Чтобы снять крышку с центральной консоли нужно подцепить ее плоской отверткой.

Предохранители и диагностический разъем системы управления двигателем:

  1. диагностический разъем;
  2. предохранитель силовой цепи главного реле;
  3. предохранитель силовой цепи реле электробензонасоса;
  4. предохранитель цепи постоянного питания контроллера

Дополнительный монтажный блок Лада Калина

Блок реле системы управления расположен под консолью панели приборов, рядом с контроллером. Чтобы его достать следует снять правую накладку консоли панели приборов (возле левой ноги пассажира), а затем:

  1. Отвернуть гайку крепления блока реле, используя торцевой ключ.
  2. Потянуть за планку.
  3. Вывести блок реле системы из под консоли.

Блок реле системы управления:

  1. реле электровентилятора системы охлаждения;
  2. реле электробензонасоса;
  3. предохранитель (50 А) электровентилятора системы охлаждения;
  4. главное реле

Внимание:

Новое реле или предохра­нитель следует устанавли­вать вместо вышедшего из строя только после опреде­ления и устранения причины неисправности. Разрешается использовать только стандарт­ные предохранители, рассчи­танные на определенную ве­личину номинального тока. Применение са­модельных предохранителей или предохранителей увели­ченного номинала может при­вести к выходу из строя эле­ментов электрооборудования, а возможно, и к пожару.

Ключевые слова:

  • монтажный блок гранты

Понравилась статья? Поделитесь с друзьями!

Сервисный бюллетень 7: 30A Обновление предохранителей комплект

Print Page

11 сентября 2019 г.


Тип: Сервисный бюллетень

Пострадавшие модели: Все модели до сентября 2019

Поврежденные Вин:


. Номер

SB 00007

Субъект

Компания Garia обнаружила проблему с потребляемой мощностью предохранителя 14. Замена мини-предохранителя 14 (30 А), расположенного в блоке предохранителей под капотом, на внешний предохранитель типа Midi устранит проблему. Эта проблема.


Исправление

Мини-предохранитель F14 необходимо заменить на 30-амперный предохранитель среднего размера с держателем вне блока предохранителей.
Осмотрите автомобили с 2015 по август 2019 года, чтобы узнать, применим ли бюллетень.
Проверьте, есть ли внешний предохранитель с левой стороны блока предохранителей, см. рисунок, если есть, бюллетень не применяется.
Убедитесь, что заполнен сервисный бюллетень 5, или выполните сервисный бюллетень 5.

  


Информация о деталях

Запасные части, необходимые для данного ремонта, необходимо заказывать непосредственно в компании Garia.
При заказе укажите VIN автомобиля, и Garia бесплатно отправит миди-предохранитель на 30 А с держателем.


Инструкция для достижения:

Номеры функций, которые будут использоваться:

1525 — Сервисный бюллетень 7: 30A Обновление предохранителей

Время: 0,20 часы

. Запасные части Требуются: 0036 Номер деталей: G21

800 — Сборка предохранителя зарядного устройства G21
QTY / автомобиль: 1


Инструменты:

Fuse Corp Clip Clip Clip of Fuse Box
. со свинцово-кислотной батареей.
Динамометрический ключ
Torx 30
Инструмент для зачистки проводов
Клещи для кабельных наконечников / обжимные клещи для проводов
Нагревательный пистолет

ИНСТРУКЦИЯ ПО ВЫПОЛНЕНИЮ: 

  1. Включите зажигание и откройте передний капот.
  2. Выключите зажигание.
  3. Поднимите подушку сиденья и выключите главный выключатель питания.
  4. Свинцово-кислотная батарея: отсоедините основной отрицательный кабель от батареи.
    Литиевая батарея: НЕТ необходимости отсоединять отрицательный кабель от батареи.
    Нажимайте кнопку питания на литиевой батарее, пока не погаснет индикатор. (Нажать на 7 секунд)
      

     

  5. Снимите крышку блока предохранителей, чтобы получить доступ к блоку предохранителей

  6. Снимите 4 болта, крепящие блок предохранителей к кронштейну блока предохранителей. (звездочка 30)

  7. Снимите верхний блок реле/предохранителей, активировав/отпустив 2 штифта сбоку и сдвинув блок назад.

    Отсоединив верхний блок реле/предохранителей от рамы, поверните блок предохранителей на 90 градусов (из вертикального положения в горизонтальное), чтобы получить больше рабочего пространства

  8. Найдите два красных провода сечением 4 мм2, идущих к предохранителю F14, и обрежьте их как можно ближе к блоку предохранителей 
      

      

  9. Установите на место верхний блок реле/предохранителей в раму
  10. Зачистите 2 обрезанных провода примерно на 1/4 дюйма (6 мм)
     
  11. : Используйте плоскогубцы для кабельных наконечников подходящего размера, чтобы обжать прилагаемые разъемы к прилагаемому предохранителю/держателю Midi).

     

  12.  Используйте тепловой пистолет, чтобы запечатать термоусадочные соединители.
  13. Проложите подключенный провод за блоком предохранителей, выходящим через дно.
  14. Используя только два верхних винта, установите блок предохранителей на кронштейн, не затягивая его, оставив нижние винты для установки держателя предохранителя Midi — см. рисунок .
     
  15. Установите последний из 4 винтов, удерживающих блок предохранителей и скобу.
  16. Затяните 4 винта с нужным моментом (Torx 30)

    12 Нм / 9 фут фунт-сила.  

  17. Если заполнен сервисный бюллетень 5, установите новую «схему блока предохранителей» внутри крышки блока предохранителей.

     

  18. Удалите предохранитель F14 с помощью инструмента для удаления предохранителей* и выбросьте его.
    См. рисунок — *Желтый пластиковый инструмент сбоку.
  19. Установите крышку обратно на блок предохранителей.
  20. Литий: Включите питание аккумулятора, нажав кнопку на аккумуляторе в течение 2 секунд, чтобы снова включить его.
    Свинцово-кислотный: Подсоедините отрицательный провод к клемме аккумулятора.
  21. Затяните гайку с правильным моментом.

    Используйте торцевой ключ на 14 мм и небольшой динамометрический ключ

    .

    12 Нм / 9 футов фунт силы.  
                            

  22. Снова включите главный выключатель.
  23. Удалите «Краткое руководство и сервисную книжку» покупателя из сетки для хранения, расположенной под капотом (если отсутствует, попросите книгу у покупателя). В разделе примечаний задокументируйте следующую информацию. «Сервисный бюллетень SB 7 — комплект модернизации предохранителей на 30 А, имя дилера, инициалы техника, дата выполнения.»

Плавкие предохранители. Типы плавких предохранителей

Автомобильные плавкие вставки, определение и спецификации

Автомобильные вставки представляют собой автоматические прерыватели для защиты электрических устройств от неподходящих токовых нагрузок. Поток тока прерывается расплавлением плавкой проволоки, по которой течет ток.

Для плавких вставок действуют следующие международные правила и рекомендации в их актуальной версии:

  • DIN 72581
  • ДИН 43560
  • ИСО 8820
  • UL 275
  • САЕ

(Кроме того, следует учитывать уровень технологии, детали фактически действующих положений реализации, принцип безопасности «люди, животные и материальные ценности должны быть защищены от опасности», а также квалификацию установленных компонентов. счет — личная ответственность производителя электрических устройств.)

Выбор Пояснения и рекомендации

Номинальное напряжение (U N ) плавкой вставки должно быть не ниже рабочего напряжения устройства или сборочной единицы, которые должны быть защищены плавкой вставкой. Если рабочее напряжение очень низкое, необходимо учитывать естественное сопротивление плавкой вставки (падение напряжения).

Падение напряжения (U N ) измеряется в соответствии со стандартами, т. е. Также указаны DIN, ISO, JASO, частично максимальные значения, характерные для Littelfuse.

Номинальный ток (I rat ) плавкой вставки должен примерно соответствовать рабочему току защищаемого устройства или сборочной единицы (в соответствии с температурой окружающей среды и определением номинального тока, т.е. постоянные токи).

Более высокая температура окружающей среды (T umg ) означает дополнительную нагрузку на плавкие вставки. Необходимо проверить условия нагрева при максимальной температуре окружающей среды, особенно при высоких номинальных токах предохранителей и сильном тепловом излучении находящихся рядом компонентов. Для таких применений номинал предохранителя должен быть уменьшен в соответствии со следующей диаграммой, соотв. таблица (см. фактор F T ):

Из-за различных спецификаций номинального тока рекомендуемый длительный ток плавких вставок составляет макс. 80 % их номинального тока (при температуре окружающей среды 23°C), см. также допустимую нагрузку по току для предохранителей (F) на отдельных страницах каталога.

Предельные значения времени преддуговой сварки показывают отношение времени плавления к току. (Они представлены в виде огибающей для всех указанных номинальных токов.)

Интеграл плавления (I 2 t) получается из квадрата тока плавления и соответствующего времени плавления. При избыточном токе с временем плавления < 5 мс интеграл плавления остается постоянным. Данные в этом каталоге основаны на 6- или 10-кратном увеличении крыс. Интеграл плавления является показателем времятоковой характеристики и информирует о постоянстве импульсов плавкой вставки. Указанные интегралы плавления являются типичными значениями.

Отключающая способность (I B ) должна быть достаточной для любых условий эксплуатации и ошибок. Ток короткого замыкания (максимальный ток короткого замыкания), отключаемый плавкими вставками при номинальном напряжении в стандартных условиях, не должен превышать ток, соответствующий отключающей способности плавкой вставки.

Максимальная рассеиваемая мощность (P V ) определяется при нагрузке с номинальным током после достижения температурного равновесия. В эксплуатации эти значения могут возникать в течение некоторого времени.

Указаны типовые значения и, кроме того, стандартные значения для предохранителей, соответствующих стандартам.

Выбор автомобильных плавких вставок

С точки зрения безопасности устройства и срока службы/надежности плавких вставок важен правильный выбор. Только при правильном выборе и при использовании по согласованию (что означает соответствие уровню технологии и действующим рекомендациям, а также указанным характеристикам, указанным в технических паспортах) с учетом принципа безопасности (то есть «человека , животные и внутренние ценности должны быть защищены от опасности»), возможна ли определенная функция плавких вставок в качестве компонента защиты (номинальная точка срабатывания). Здесь применима личная ответственность производителей электрических устройств:

«Любое лицо, участвующее в производстве электрических систем или производстве электрического оборудования, включая тех, кто занимается эксплуатацией таких систем или оборудования, согласно действующему толкованию закона несет индивидуальную ответственность за каждый аспект соблюдения признанных правила и процедуры электротехники».

  1. Необходимое номинальное напряжение плавкой вставки определяется ее требуемым рабочим напряжением (с учетом падения напряжения плавкой вставки).
  2. Номинальный ток плавкой вставки (I N Предохранитель ) определяется макс. эффективная токовая нагрузка (I , макс. ) с учетом температуры окружающей среды (фактор F T ) и различных определений номинального тока (определение «постоянный ток») (см. «Фактор F I »). Применяется следующее: I N Предохранитель 3 Iрабочий макс. х F I х F T
  3. t-значение (интеграл текущего времени). 2 В случае импульсной нагрузки и для защиты полупроводников подходящий номинальный ток также можно определить с помощью I
  4. .

  5. Вышеупомянутые два пункта помогут вам установить наиболее подходящий номинальный ток плавкой вставки и ее преддуговые пределы времени (при необходимости проверить экспериментально).
  6. Необходимая отключающая способность плавкой вставки определяется макс. возможный ток неисправности, который может возникнуть.
  7. В дополнение к вышеупомянутым пунктам, способ установки также важен для правильного выбора плавкой вставки (с учетом возможных сертификатов).

Что касается конкретных условий любого конкретного применения (безопасность продукта), как правило, необходимо проверить плавкую вставку и/или тепловой выключатель или держатель в устройстве, которое должно быть защищено в нормальных условиях и условиях неисправности!

Кривая изменения номинальных значений температуры
Снижение номинальных характеристик плавкой вставки

Выбор предохранителя для электронных устройств

Ниже перечислены многие факторы, которые необходимо учитывать при выборе предохранителя для электронных устройств. Дополнительные рекомендации см. в нашем Справочное руководство по технологии предохранителей или свяжитесь с представителем продукции Littelfuse в вашем регионе:

Факторы выбора

  1. Нормальный рабочий ток
  2. Прикладное напряжение (переменного или постоянного тока)
  3. Температура окружающей среды
  4. Ток перегрузки и время, в течение которого предохранитель должен открыться
  5. Максимально доступный ток короткого замыкания
  6. Импульсы, импульсные токи, пусковые токи, пусковые токи и переходные процессы в цепи
  7. Физические ограничения размера, такие как длина, диаметр или высота
  8. Требуются сертификаты

  9. , такие как UL, CSA, VDE, METI, MITI или Military
  10. .

  11. Особенности предохранителя (тип крепления/форм-фактор, легкость снятия, осевые выводы, визуальная индикация и т. д.)
  12. Элементы держателя предохранителя, если применимо, и соответствующее изменение номинальных характеристик (зажимы, монтажный блок, крепление на панели, крепление на печатной плате, экранирование от радиопомех и т. д.)
  13. Тестирование приложений и проверка перед производством
Система упаковки и нумерации предохранителей Littelfuse

Определения и термины

Температура окружающей среды:

Относится к температуре воздуха, непосредственно окружающего предохранитель, и его не следует путать с «комнатной температурой». Температура окружающей среды предохранителя во многих случаях значительно выше, так как он закрыт (например, в держателе предохранителя для монтажа на панели) или установлен рядом с другими теплопроизводящими компонентами, такими как резисторы, трансформаторы и т. д.

Отключающая способность:

Также известный как номинал отключения или номинал короткого замыкания, это максимальный утвержденный ток, который предохранитель может безопасно отключать при номинальном напряжении. Дополнительную информацию см. в определении рейтинга прерывания в этом разделе.

Номинальный ток:

Номинальное значение силы тока предохранителя. Он устанавливается изготовителем как значение тока, которое может выдержать предохранитель, на основе контролируемого набора условий испытаний (см. ПЕРЕНОС).

Каталожные номера предохранителей включают в себя обозначение серии и номинальный ток. Обратитесь к разделу РУКОВОДСТВО ПО ВЫБОРУ ПРЕДОХРАНИТЕЛЯ, чтобы узнать, как сделать правильный выбор.

Rating:

При температуре окружающей среды 25ºC рекомендуется, чтобы предохранители работали при токе, не превышающем 75 % от номинального тока, установленного в контролируемых условиях испытаний. Эти условия испытаний являются частью стандарта UL/CSA/ANCE (Мексика) 248-14 «Предохранители для дополнительной защиты от перегрузки по току», основной целью которого является определение общих стандартов испытаний, необходимых для постоянного контроля изготовленных изделий, предназначенных для защиты от возгорания и т. д. Некоторые распространенные варианты этих стандартов включают: полностью закрытые держатели предохранителей, высокое контактное сопротивление, движение воздуха, переходные выбросы и изменения размера соединительного кабеля (диаметра и длины). Плавкие предохранители по существу являются чувствительными к температуре устройствами. Даже небольшие отклонения от контролируемых условий испытаний могут сильно повлиять на прогнозируемый срок службы предохранителя, когда он нагружен до своего номинального значения, обычно выражаемого как 100 % номинального значения.

Инженер-проектировщик схем должен четко понимать, что целью этих контролируемых условий испытаний является предоставление производителям предохранителей возможности поддерживать единые стандарты производительности для своей продукции, и он должен учитывать изменяющиеся условия своего применения. Чтобы компенсировать эти переменные, инженер-схемотехник, разрабатывающий безотказную и долговечную защиту предохранителей в своем оборудовании, обычно нагружает свой предохранитель не более чем на 75% от номинального значения, указанного производителем, учитывая, что перегрузка и должна быть предусмотрена соответствующая защита от короткого замыкания.

Предохранители, о которых идет речь, являются чувствительными к температуре устройствами, номинальные характеристики которых установлены для температуры окружающей среды 25ºC. Температура предохранителя, создаваемая током, проходящим через предохранитель, увеличивается или уменьшается при изменении температуры окружающей среды.

Таблица температуры окружающей среды в разделе РУКОВОДСТВО ПО ВЫБОРУ ПРЕДОХРАНИТЕЛЕЙ иллюстрирует влияние температуры окружающей среды на номинальный ток предохранителя. В большинстве традиционных конструкций предохранителей Slo-Blo® используются материалы с более низкой температурой плавления, и поэтому они более чувствительны к изменениям температуры окружающей среды.

Размеры:

Если не указано иное, размеры указаны в дюймах.

Размеры предохранителей в этом каталоге варьируются от прибл. 0402 размером микросхемы (0,041 «Д x 0,020» Ш x 0,012 «В) до 5 AG, также широко известный как предохранитель «MIDGET» (диаметр 13/32″ x длина 11/2″). По мере того, как на протяжении многих лет разрабатывались новые продукты, размеры предохранителей менялись, чтобы удовлетворить различные потребности в защите электрических цепей.

Первые предохранители были простыми устройствами с открытым проводом, за которыми в 1890-х годах Эдисон вложил тонкую проволоку в цоколь лампы, чтобы сделать первый штекерный предохранитель. К 1904, Underwriters Laboratories установила спецификации размеров и рейтинга для соответствия стандартам безопасности. Предохранители возобновляемого типа и автомобильные предохранители появились в 1914 году, а в 1927 году компания Littelfuse начала производить предохранители с очень низким током для зарождающейся электронной промышленности.

Размеры предохранителей в следующей таблице начинаются с ранних предохранителей «Автомобильное стекло», отсюда и термин «AG». Номера применялись в хронологическом порядке, поскольку разные производители начали выпускать новый размер: например, «3AG» был третьим размером, представленным на рынке. Размеры и конструкции других нестеклянных предохранителей определялись функциональными требованиями, но сохраняли размеры длины или диаметра стеклянных предохранителей. Их обозначение было изменено на AB вместо AG, что указывает на то, что внешняя трубка была изготовлена ​​из бакелита, волокна, керамики или подобного материала, кроме стекла. Предохранитель самого большого размера, показанный в таблице, — это 5AG, или «MIDGET», название, принятое из-за его использования в электротехнической промышленности и диапазона Национального электротехнического кодекса, который обычно распознает предохранители номиналом 9./16” x 2” в качестве наименьшего стандартного используемого предохранителя.

Промышленные предохранители и принципы их работы

См. каталог Littelfuse POWR-GARD для получения полной информации по выбору предохранителей

Важной частью разработки качественной защиты от перегрузки по току является понимание потребностей системы и основных принципов устройства защиты от перегрузки по току. В этом разделе обсуждаются эти темы с особым вниманием к применению предохранителей. Если у вас есть дополнительные вопросы, позвоните в нашу группу технической поддержки и инженерных услуг по телефону 1-800-TEC-FUSE (1-800-832-3873).

Почему защита от перегрузки по току?

Все электрические системы со временем испытывают перегрузки по току. Если не устранить их вовремя, даже умеренные перегрузки по току быстро перегревают компоненты системы, повреждая изоляцию, проводники и оборудование. Большие сверхтоки могут расплавить проводники и испарить изоляцию. Очень высокие токи создают магнитные силы, которые изгибают и скручивают шины. Эти большие токи могут выдергивать кабели из их клемм и давать трещины в изоляторах и распорках.

Слишком часто пожары, взрывы, ядовитые пары и паника сопровождают неконтролируемые сверхтоки. Это не только повреждает электрические системы и оборудование, но может привести к травмам или смерти находящихся поблизости людей.

Чтобы уменьшить эти опасности, Национальный электротехнический кодекс® (NEC®), правила OSHA и другие применимые стандарты проектирования и установки требуют защиты от перегрузки по току, которая отключит перегруженное или неисправное оборудование.

Промышленные и правительственные организации разработали стандарты производительности для устройств сверхтока и процедуры испытаний, которые демонстрируют соответствие стандартам и требованиям NEC. Эти организации включают: Американский национальный институт стандартов (ANSI), Национальную ассоциацию производителей электрооборудования (NEMA) и Национальную ассоциацию противопожарной защиты (NFPA), все из которых работают совместно с признанными на национальном уровне испытательными лабораториями (NRTL), такими как Underwriters Laboratories ( УЛ).

Электрические системы должны соответствовать применимым требованиям кодекса, включая требования по защите от перегрузки по току, прежде чем электроэнергетическим компаниям будет разрешено подавать электроэнергию на объект.

Что такое качественная защита от перегрузки по току?

Система с качественной защитой от перегрузки по току имеет следующие характеристики:

  • Отвечает всем законодательным требованиям, таким как NEC, OSHA, местные нормы и т. д.
  • Обеспечивает максимальную безопасность персонала, при необходимости превышающую минимальные требования кода.
  • Сводит к минимуму повреждение имущества, оборудования и электрических систем из-за перегрузки по току.
  • Обеспечивает скоординированную защиту. Только защитное устройство непосредственно на стороне линии перегрузки по току размыкается, чтобы защитить систему и свести к минимуму ненужные простои.
  • Экономически эффективен, но при этом обеспечивает резервную отключающую способность для будущего роста.
  • Состоит из оборудования и компонентов, не подверженных устареванию и требующих лишь минимального обслуживания, которое может выполнять штатный обслуживающий персонал с использованием легкодоступных инструментов и оборудования.

Типы и последствия перегрузки по току

Перегрузка по току — это любой ток, превышающий номинальный ток проводников, оборудования или устройств в условиях эксплуатации. Термин «перегрузка по току» включает как перегрузки, так и короткие замыкания.

Перегрузки

Перегрузка — это перегрузка по току, ограниченная нормальными путями тока, при которых отсутствует пробой изоляции.

Длительные перегрузки обычно вызываются установкой чрезмерного количества оборудования, такого как дополнительные осветительные приборы или слишком много двигателей. Длительные перегрузки также вызваны перегрузкой механического оборудования и выходом из строя оборудования, например выходом из строя подшипников. Если не отключить в установленные сроки, длительные перегрузки в конечном итоге перегревают компоненты цепи, вызывая тепловое повреждение изоляции и других компонентов системы.

Устройства защиты от перегрузки по току должны отключать цепи и оборудование, испытывающие непрерывные или длительные перегрузки, до того, как произойдет перегрев. Даже умеренный перегрев изоляции может серьезно сократить срок службы задействованных компонентов и/или оборудования. Например, двигатели, перегруженные всего на 15 %, могут иметь менее 50 % нормального срока службы изоляции.

Часто возникают временные перегрузки. К распространенным причинам относятся временные перегрузки оборудования, например слишком глубокий рез станка, или просто запуск индуктивной нагрузки, такой как двигатель. Поскольку временные перегрузки по определению безвредны, устройства защиты от перегрузки по току не должны размыкать или размыкать цепь.

Важно понимать, что выбранные предохранители должны иметь достаточную выдержку времени, чтобы обеспечить запуск двигателей и устранение временных перегрузок. Однако, если перегрузка по току продолжится, предохранители должны открыться до того, как компоненты системы будут повреждены. Предохранители с задержкой срабатывания Littelfuse POWR-PRO® и POWR-GARD® предназначены для удовлетворения этих потребностей в защите. Как правило, предохранители с задержкой срабатывания удерживают 500% номинального тока в течение как минимум десяти секунд, но все же быстро размыкаются при более высоких значениях тока.

Несмотря на то, что высокоэффективные двигатели, одобренные правительством, и двигатели NEMA Design E имеют гораздо более высокие токи блокировки ротора, предохранители POWR-PRO® с выдержкой времени, такие как серии FLSR_ID, LLSRK_ID или IDSR, имеют достаточную выдержку времени, чтобы позволить двигателям отключаться. начать, когда предохранители правильно выбраны в соответствии с NEC®.

Короткие замыкания

Короткое замыкание — это перегрузка по току, протекающему вне своего нормального пути. Типы коротких замыканий обычно делятся на три категории: замыкания на болтах, дуговые замыкания и замыкания на землю. Каждый тип короткого замыкания определен в разделе «Термины и определения».

Короткое замыкание вызвано пробоем изоляции или неисправным соединением. При нормальной работе цепи подключенная нагрузка определяет ток. Когда происходит короткое замыкание, ток обходит нормальную нагрузку и идет по «более короткому пути», отсюда и термин «короткое замыкание». Поскольку полное сопротивление нагрузки отсутствует, единственным фактором, ограничивающим протекание тока, является полное полное сопротивление системы распределения от генераторов коммунального предприятия до места неисправности.

Типичная электрическая система может иметь нормальное сопротивление нагрузки 10 Ом. Но в однофазной ситуации та же система может иметь импеданс нагрузки 0,005 Ом или меньше. Чтобы сравнить два сценария, лучше всего применить закон Ома (I = E/R для систем переменного тока). Однофазная цепь на 480 вольт с сопротивлением нагрузки 10 Ом будет потреблять 48 ампер (480/10 = 48). Если та же цепь имеет полное сопротивление системы 0,005 Ом при коротком замыкании нагрузки, доступный ток короткого замыкания значительно возрастет до 9 Ом.6000 ампер (480/0,005 = 96000).

Как уже говорилось, короткие замыкания — это токи, протекающие не по своей обычной траектории. Независимо от величины перегрузки по току, чрезмерный ток должен быть быстро устранен. Если не устранить их быстро, большие токи, связанные с короткими замыканиями, могут иметь три серьезных последствия для электрической системы: нагрев, магнитное напряжение и искрение.

Нагрев происходит в каждой части электрической системы, когда через систему проходит ток. Когда перегрузки по току достаточно велики, нагрев происходит практически мгновенно. Энергия таких сверхтоков измеряется в ампер-секундах (I2t). Перегрузка по току в 10 000 ампер, которая длится 0,01 секунды, имеет I2t 1 000 000 A2 с. Если бы ток можно было уменьшить с 10 000 ампер до 1 000 ампер за тот же период времени, соответствующий I2t уменьшился бы до 10 000 А2с, или всего на один процент от первоначального значения.

Если ток в проводнике увеличивается в 10 раз, I2t увеличивается в 100 раз. Ток всего 7500 ампер может расплавить медный провод № 8 AWG за 0,1 секунды. В течение восьми миллисекунд (0,008 секунды или полупериода) ток силой 6500 ампер может повысить температуру медного провода с термопластичной изоляцией #12 AWG THHN с рабочей температуры 75°C до максимальной температуры короткого замыкания 150°C. . Любые токи больше этого могут немедленно испарить органическую изоляцию. Дуги в месте неисправности или от механического переключения, такого как автоматические переключатели или автоматические выключатели, могут воспламенить пары, вызывая сильные взрывы и электрические вспышки.

Магнитное напряжение (или сила) является функцией квадрата пикового тока. Токи короткого замыкания в 100 000 ампер могут создавать силы более 7 000 фунтов на фут шины. Напряжения такой величины могут повредить изоляцию, оторвать проводники от клемм и нагрузить клеммы оборудования до такой степени, что произойдет значительное повреждение.

Дуговой разряд в месте неисправности плавит и испаряет все проводники и компоненты, вовлеченные в неисправность. Дуги часто прожигают кабелепроводы и корпуса оборудования, заливая зону расплавленным металлом, который быстро вызывает возгорание и/или ранит находящихся поблизости людей. Дополнительные короткие замыкания часто возникают, когда испаряющийся материал осаждается на изоляторах и других поверхностях. Длительные дуговые замыкания испаряют органическую изоляцию, и пары могут взорваться или сгореть.

Независимо от того, являются ли эффекты нагревом, магнитным напряжением и/или дуговым разрядом, потенциальное повреждение электрических систем может быть значительным в результате возникновения коротких замыканий.

II. Соображения по выбору

Соображения по выбору предохранителей (600 вольт и ниже)

Поскольку защита от перегрузки по току имеет решающее значение для надежной работы и безопасности электрической системы, выбор устройства перегрузки по току и его применение должны быть тщательно продуманы. При выборе предохранителей необходимо оценить следующие параметры или соображения:

  • Текущий рейтинг
  • Номинальное напряжение
  • Рейтинг прерывания
  • Тип защиты и характеристики предохранителя
  • Ограничение тока
  • Физический размер
  • Индикация

Общие рекомендации по промышленным предохранителям

На основании приведенных выше соображений по выбору рекомендуется следующее:

Предохранители с номиналом от 1/10 до 600 ампер

  • Когда доступные токи короткого замыкания меньше 100 000 ампер и когда оборудованию не требуются более токоограничивающие характеристики предохранителей UL класса RK1, токоограничивающие предохранители серии FLNR и FLSR_ID класса RK5 обеспечивают превосходную выдержку времени и цикличность при более низкой стоимости. чем предохранители РК1. Если доступные токи короткого замыкания превышают 100 000 ампер, оборудованию могут потребоваться дополнительные возможности ограничения тока предохранителей класса RK1 серии LLNRK, LLSRK и LLSRK_ID.
  • Быстродействующие предохранители класса T серий JLLN и JLLS обладают компактными характеристиками, которые делают их особенно подходящими для защиты автоматических выключателей в литом корпусе, блоков счетчиков и аналогичных устройств с ограниченным пространством.
  • Предохранители класса J серии JTD_ID и JTD с задержкой срабатывания

  • используются в OEM-центрах управления двигателями, а также в других приложениях для технического обслуживания двигателей и трансформаторов, требующих компактной защиты IEC Type 2.
  • Предохранители серии

  • класса CC и класса CD используются в цепях управления и панелях управления, где пространство ограничено. Предохранители серии Littelfuse POWR-PRO CCMR лучше всего использовать для защиты небольших двигателей, а предохранители серии Littelfuse KLDR обеспечивают оптимальную защиту силовых трансформаторов управления и подобных устройств.

По вопросам применения продукта обращайтесь в нашу группу технической поддержки по телефону 800-TEC-FUSE.

Предохранители с номиналом от 601 до 6000 ампер

Для превосходной защиты большинства цепей общего назначения и двигателей рекомендуется использовать предохранители класса L серии POWR-PRO® KLPC. Предохранители класса L являются единственной серией предохранителей с выдержкой времени, доступной в этих более высоких амперных номиналах.

Информацию обо всех упомянутых выше сериях предохранителей Littelfuse можно найти в Таблицах классов и применений предохранителей UL/CSA в Техническом руководстве по применению в конце каталога продукции POWR-GARD.

Контрольный список защиты промышленных цепей

Чтобы правильно выбрать устройство защиты от перегрузки по току для электрической системы, проектировщики цепей и систем должны задать себе следующие вопросы перед проектированием системы:

  • Каков ожидаемый нормальный или средний ток?
  • Какой максимальный непрерывный (три часа и более) ожидаемый ток?
  • Какие пусковые или временные импульсные токи можно ожидать?
  • Способны ли устройства защиты от перегрузки по току различать ожидаемые пусковые и импульсные токи и размыкаться при длительных перегрузках и неисправностях?
  • Какие экстремальные условия окружающей среды возможны? Необходимо учитывать пыль, влажность, перепады температур и другие факторы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *