Как подключить электродвигатель с 380 на 220 через конденсаторы без потери мощности видео: Как подключить электродвигатель 380 на 220 без потери мощности через конденсаторы, схемы

Содержание

Как подключить электродвигатель 380 на 220 без потери мощности через конденсаторы, схемы

В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.

СОДЕРЖАНИЕ:

Конструктивные особенности

Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

Схема №1.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Читайте также:

Схема №2.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

Читайте также:

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД.  Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Как подключить с реверсом

В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.

Для реализации схемы можно использовать переключатель с двумя положениями.

К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.

Как подключить по схеме «звезда-треугольник» (с тремя проводами)

В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.

Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».

Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

Читайте также:

Принцип работы схемы прост:

  • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
  • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
  • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

Итоги

Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

Подключение двигателя 380 на 220 через конденсаторы. Подключение трехфазного двигателя к однофазной сети без потери мощности

Что такое трехфазный ток?

Большинство асинхронных двигателей работает от трехфазной сети, поэтому изначально рассмотрим понятие трехфазного тока. Трехфазный ток или трехфазная система электрических цепей – это система, состоящая из трех цепей, в которой действуют электродвижущие силы (ЭДС) одинаковой частоты, сдвинутые по фазе друг относительно друга на 1/3 периода(φ=2π/3) или 120°.

Большинство производственных генераторов построено на основе трехфазной генерации тока. По сути, в них используют три генератора переменного тока, которые располагаются относительно друг друга под углом 120°.

Схема с тремя генераторами предполагает, что из данного устройства будут выводиться 6 проводов (по два на каждый генератор переменного тока). Однако на практике видно, что бытовые, да и промышленные сети приходят к потребителю в виде трех проводов. Это делается в целях экономии электропроводки.

Катушки генераторов соединяют таким образом, что на выходе получается 3 провода, а не 6. Также данная коммутация обмоток генерирует ток мощностью 380В, вместо привычных 220В. Именно такую трехфазную сеть привыкли видеть все пользователи.

ИНФОРМАЦИЯ: Первая система трехфазного тока на шести проводах была изобретена Николой Тесла. Позже ее усовершенствовал и развил М. О. Доливо-Добровольский, который впервые предложил четырех и трех проводную систему, а также провел череду экспериментов, где выявил ряд преимуществ данной коммутации.

Большинство асинхронных двигателей работают от трехфазной сети. Рассмотрим подробнее, как устроена работа данных агрегатов.

Общие правила

Прежде чем подключить электродвигатель, нужно обязательно уточнить его номинал. Если напряжение превысит расчетное – наступит перегрев обмоток, если оно будет низким – его не хватит для запуска.

Данное значение присутствует в маркировке, чаще всего в двух показателях верхнего и нижнего пределов: 660/380, 380/220 и 220/127 вольт.

Номинал должен совпадать со схемой, по которой выполнено соединение обмоток. Подключение «звезда» объединяет их концы в одной точке, а фазы соединяются с выводами катушек. Здесь используется больший номинал напряжения, отмеченный в маркировке. По схеме «треугольник» выполняется последовательное соединение концов между собой. Образуется полностью замкнутый контур. В данном случае уже используется меньшее значение напряжения. Подключение агрегатов выполняется разными способами, в том числе и смешанным.

Решая, как подключить трехфазный двигатель на 220 вольт, следует помнить, что его нельзя просто взять и подключить к обычной сети. Вал не будет вращаться поскольку отсутствует переменное поле, поочередно воздействующее на ротор. Проблема разрешается путем смещения тока и напряжения в обмотках фаз. Для получения желаемого результата, выполняется подключение двигателя через конденсатор, из-за которого напряжение начинает отставать до минус 90 градусов.

В любом случае полноценно сместить напряжение и сделать 380 вольт из 220 не удастся, поэтому его КПД составит от 30 до 50% в зависимости от схемы подключения обмоток.

В таких режимах двигатель включается только под нагрузкой, а периоды холостого хода сокращаются до минимума. Несоблюдение правил приведет агрегат к выходу из строя.

Необходимые инструменты и комплектующие

Любой монтаж вышеперечисленных схем потребует минимальных знаний электротехники, а также навыков работы с радиоэлектроникой и пайкой мелких деталей.

Из инструментов потребуется:

  1. Набор отверток для сбора/разбора блока управления двигателя. Для старых двигателей лучше подбирать мощные плоские отвертки из хорошей стали. За длительное время работы двигателя болты в корпусе могут «прикипеть». Для их откручивания потребуется немало сил и хороший инструмент.
  2. Пассатижи для обжатия проводов и других манипуляций.
  3. Острый нож для снятия изоляции.
  4. Паяльник.
  5. Канифоль и припой.
  6. Индикаторная отвертка для поиска фазы, а также индикации разрыва на кабеле.
  7. Мультиметр. Один из основных диагностирующих устройств.

Также потребуются радиодетали:

  • Конденсаторы.
  • Кнопка пуска.
  • Магнитный пускатель.
  • Тумблер реверса.
  • Контактная плата.

Перечисленных инструментов и радиокомпонентов хватит для сборки представленных выше схем.

ВАЖНО: Не подключайте двигатель в сеть, не проверив работу собранной схемы. Ее можно протестировать при помощи мультиметра. Это убережет технику от короткого замыкания.

Способы подключения

Теперь стоит рассмотреть способы подключения асинхронного двигателя к бытовой сети. Всего 4 и их можно комбинировать!

С конденсатором

При использовании мотора мощностью до 1500 Вт можно устанавливать только один конденсатор – рабочий. Чтобы вычислить его мощность, воспользуйтесь формулой:

Сраб=(2780*I)/U=66*P.

I – рабочий ток, U – напряжение, Р – мощность двигателя.

Чтобы упростить расчет, можно поступить иначе – на каждые 100 Вт мощности необходимо 7 мкФ емкости. Следовательно, для двигателя 750 Вт нужно 52-55 мкФ (нужно поэкспериментировать немного, чтобы добиться нужного смещения фазы).

В том случае, если нет в наличии конденсатора нужной емкости, нужно соединить параллельно те, которые имеются, при этом используется такая формула:

Собщ=C1+C2+C3+…+Cn.

Пусковой конденсатор необходим при использовании двигателей, мощность которых свыше 1,5 кВт. Пусковой конденсатор работает только в первые секунды включения, чтобы дать «толчок» ротору. Он включается через кнопку параллельно рабочему. Другими словами, с его помощью сильнее сдвигается фаза. Только таким образом можно подключить двигатель 380 на 220 через конденсаторы.

Суть использования рабочего конденсатора – это получение третьей фазы. В качестве первых двух используются ноль и фаза, которая уже есть в сети. Проблем с подключением двигателя возникнуть не должно, самое главное – прячьте конденсаторы подальше, желательно в герметичный крепкий корпус. Если элемент выйдет из строя, он может взорваться и нанести вред окружающим. Напряжение конденсаторов должно быть не менее 400 В.

Как выбрать конденсатор

Есть несколько нюансов, которые касаются количества подсоединяемых конденсаторов.

  1. Если мощность электромотора не превышает 1,5 кВт, то в схему можно устанавливать один рабочий конденсатор.
  2. Если же двигатель сразу при пуске работает под нагрузкой или его мощность превышает 1,5 кВт, тогда в схему придется установить два конденсатора: рабочий и пусковой. Оба элемента в схему вставляются параллельно. При этом последний будет работать только при запуске мотора, после чего он автоматически отключается.

По сути, схема подключения электродвигателя запитана на кнопку «Пуск» и на тумблер отключения питания. Чтобы запустить мотор, необходимо нажать на кнопку «Пуск» и удерживать ее до полного включения двигателя. Это можно контролировать даже на слух.

Подключение трехфазного двигателя в сеть 220В через конденсатор

Иногда есть необходимость, чтобы электродвигатель работал то в ту, то в другую сторону. Это тоже несложная схема, в которую необходимо установить дополнительный тумблер переключения направления вращения ротора.

Один конец тумблера (основной) запитывается на конденсатор, второй на ноль, третий на фазу.

Если при такой схеме подключения мотор набирает слабо обороты, или его мощность снижается, то придется установить дополнительно пусковой конденсатор.

Емкость конденсатора

Есть несколько параметров устанавливаемых в электродвигатель конденсаторов, которые придется рассчитывать под необходимый номинал мощности мотора. И один из них – это емкость. Чтобы ее определить, можно воспользоваться несколькими формулами.

  • Формула: C=2800x(I/U) – если схема подключения треугольник. И C=480x(I/U) – если звезда. При этом «I» — это сила тока, которую можно замерить электрическими клещами, «U» — это напряжение в сети переменного тока.
  • Формула: C=66xP, где «P» – мощность движка.

Есть более простой вариант определения емкости, в нем присутствует соотношение – на каждые 1,0 кВт мощности необходимо присоединять 70 мкФ. Кстати, в данном случае приходится именно подбирать.

Поэтому рекомендуется использовать конденсаторы разной емкости. Подключая их в схему, производится запуск движка, который должен работать корректно. Если необходимо уменьшить или увеличить емкость, то добавляется или уменьшается один из конденсаторов.

Внимание! При сборке схемы, необходимо проверять силу тока в обмотках. Она должна быть меньше, чем номинал данного показателя.

Что касается емкости пускового конденсатора, то он должен быть в 2,5-3,0 раза больше, чем у рабочего.

Тип конденсаторов

Какие же конденсаторы используются при подключении электродвигателя 380 на 220 вольт? Чаще всего это марки КБП, МБГП, МПГО, МБГО, все они бумажного типа в герметичном металлическом корпусе. У всех этих типов есть один недостаток – большие габаритные размеры при небольшой емкости. Поэтому связка из нескольких изделий – достаточно большая, что неудобно во всех отношениях.

Есть на рынке так называемые электролитические конденсаторы.

  • Во-первых, у них другая схема подключения двигателя 380В в сеть переменного тока. Сюда добавляются диоды и резисторы, что усложняет схему.
  • Во-вторых, вышедший из строя диод становится причиной того, что через конденсатор начинает перемещать ток большой силы. Конечный результат – взрыв последнего.

Полипропиленовые конденсаторы CBB.

И третий тип конденсаторов – это полипропиленовые элементы металлизированного типа, марка СВВ. Их форма может быть круглой или пластинчатой. Приборы высокого качества, небольших размеров и большой емкости. Их-то и рекомендуют сегодня устанавливать специалисты, когда стоит вопрос, как подключить электродвигатель 380 вольт на 220.

Напряжение конденсатора

Рабочее напряжение – один из основных параметров, на которые надо обязательно обращать внимание. Здесь две позиции:

  • Конденсатор с большим напряжением (от номинального) стоит дорого и имеет большие размеры. Установленный на электродвигатель он изменит размеры последнего, что не всегда удобно.
  • С меньшим напряжением. Эта ситуация приведет к перегреву прибора, и даже к взрыву.

Поэтому совет: умножаете напряжение в сети на 1,15 – это и будет напряжение конденсатора.

С реверсом

Подключение двигателя с реверсом пригодится, если вы собираете, например, токарный станок по дереву. Сделать обратный ход не сложно, нужно лишь поменять местами пары «фаза-сеть» и «фаза-конденсатор».

Справится с этим переключатель-пакетник однополюсного типа.

Используя пускатель

Если изначально известно, что агрегат обладает значительными нагрузками – пусковой и рабочей – рекомендуется подключить электродвигатель с 380 на 220 вольт с использованием контактора или магнитного пускателя.

Использование пусковых устройств повышает надежность коммутации, а в ходе эксплуатации защищает устройство от возможных аварий.

Включение производится простым нажатием пусковой кнопки. В результате, наступает замыкание цепи, управляющей катушкой пускового устройства. Напряжение поступает к пусковому конденсатору Спуск.

Ток, протекающий по катушке К1, вызывает замыкание контактов К1.1 и К1.2. Контакты К1.1 замыкают линию, питающую двигатель, а контакты 1.2 осуществляют шунтирование пусковой кнопки, возвращая ее в отключенное положение. После этого, цепь, питающая пусковой конденсатор, оказывается разомкнутой. С помощью этого устройства очень просто сделать из 220 вольт 380, превратив трехфазное устройство в однофазный агрегат.

Без конденсатора

Если не планируется подключение конденсатора к двигателю или его нет, то можно обойтись и так. Для этого понадобится транзисторный ключ.

Схема без конденсатора для электродвигателя выглядит так как на фото выше, а работает следующим образом:

  1. Напряжение из сети подается на 2 входные точки.
  2. На третий вход напряжение идет из связки конденсатор-резистор (R-C), что задает время.
  3. Между 2 резисторами R устанавливается переключатель, чтобы регулировать сдвиг фазы.
  4. Транзистор VS1, при наполнении конденсатора, открывает ключ VS2. Получается, что ток двигается плавно и не происходит пульсаций.

При подключении электродвигателя 380 на 220 через ключи могут возникнуть проблемы с поиском этих самых транзисторов. Поэтому конденсатор все еще остается самым удобным вариантом.

Как правильно выбрать схему подключения

Трёхфазные электромоторы подключаются по двум основным схемам:

  • схема типа «звезда»;
  • схема типа «треугольник».

Обе имеют как недостатки, так и преимущества. Подключение по типу «звезда» позволяет добиться наиболее плавного пуска двигателя, но снижает его номинальную мощность на 30%.

В противоположность «звезде» тип «треугольник» позволяет мотору развить полную мощность, но нагружает его обмотку. Высокая токовая нагрузка обмотки вызывает её нагрев и может спровоцировать пробой изоляции, что приведёт мотор в негодность.

На выбор схемы подключения влияет также происхождение двигателя. Моторы иностранного производства предназначены для эксплуатации в электрических сетях с напряжением 400/690 вольт. Если такие двигатели запитать по схеме «звезда» это приведёт их в негодность.

В отечественных моторах схема «звезда» может быть предустановлена на заводе. Это легко определяется по количеству выводов обмоток в распаячной коробке: если их три – схема «звезда» реализована в двигателе заводским методом, а если шесть – двигатель может быть подключен по любой из типовых схем. В распаячных коробках последних может не быть указания на контакты, являющиеся началами и концами обмоток статора. Определить пары контактов каждой обмотки можно, прозвонив контакты с помощью мультиметра.

Применение автоматики позволяет реализовать комбинированную схему подключения, сочетающую в себе преимущества обеих типовых схем, обеспечивающую плавный и последующий автоматический переход на полную мощность через заданное время.

Для обеспечения работы по схеме «звезда-треугольник» используются три пускателя. При включении первого пускателя реле времени подключает третий пускатель. После выхода двигателя на полную мощность реле времени отключает подачу напряжения на третий пускатель, одновременно подключая второй.

Подключение по такой схеме не предусматривает возможности реверсивной работы двигателя.

Включаемся в однофазную сеть

Итак, осталось только глубинно рассмотреть, как подключить контактор по выше указанным схемам.

Начать стоит с треугольника. Вот самая простая схема подключения:

На ней видно, что один провод от сети идет на конденсатор. Его можно припаять прямо к выходу. От этого же контакта провод идет на средний вход коробки подключения мотора.

Второй провод от сети идет на крайний левый контакт. Обратите внимание, что разницы нет, какой провод вести на конденсатор, а какой на двигатель, ведь в розетках переменное напряжение. Оставшийся выход на конденсаторе необходимо соединить с оставшимся входом на двигателе.

Теперь в электрической коробке необходимо замкнуть выходные и входные контакты. Делается это просто: шиной или проводом. На схеме их соединение закрашены черным цветом.

Со звездой ситуация обстоит еще проще. Строится схема вот так:

Перед тем, как подключить конденсатор к электродвигателю 220в, лучше поставить хороший пакетник. «звезда» может отключать электричество, если двигатель сильно нагрузить.

Для начала нужно найти фазу и ноль – здесь это важно. Понадобится мультиметр, который необходимо включить в положение «переменное напряжение 220». Теперь вставьте красный щуп в отверстие на розетке, а второй прислоните к стене или заземлительному контакту. Если показывает «220» – значит тот провод, которого касаются щуп, фазный. Если на экране «-220» — вы нащупали ноль.

Фаза идет в пакетник, где разделяется. Один проводок нужно пустить на Н1, а второй на блок конденсаторов. Ноль сразу идет на Н3. Конденсаторы через переключатель соединяются последовательно.

Оставшийся контакт идет на Н2. На этом подключение двигателя 380 на 220 можно считать завершенным.

Как правильно провести подключение электродвигателя 380 на 220 вольт

В домашнем хозяйстве на участке нередко приходится пользоваться электродвигателями, которые работают от трехфазной сети на 380 вольт. И если три фазы к участку подведены, то проблем с подключением электрического мотора не возникает.

А что делать в том случае, если на участок заходят всего два провода (ноль и фаза), то есть на участок подается однофазное напряжение 220 вольт? Выход один – провести подключение электродвигателя 380 на 220 В, для чего можно воспользоваться разными схемами.

Схема подключения трехфазного двигателя к однофазной сети

Сразу же оговоримся, что оптимальный вариант подключение электрического двигателя, работающего на 380В, к трехфазной сети. Это обеспечит и номинальную мощность прибора, и номинал вращения, отсюда и эффективность работы агрегата. Поэтому любое вмешательство в параметры создает условия снижения качества эксплуатации.

Что учесть

Переделка с 380 на 220 имеет смысл, если речь идет об эл/двигателе сравнительно небольшой мощности – до 2,5, но не более (это максимум) 3 кВт. В принципе, ограничений по данной характеристике нет. Но при этом, скорее всего, понадобится провести ряд мероприятий и потратить некоторую сумму денег и время.

  • Переложить вводной кабель эл/питания, к тому же придется заниматься согласованиями с поставщиком электроэнергии в плане повышения лимита. Не следует забывать, что для частных домовладений установлен предел эн/потребления; как правило, в 15 кВт. «Впишется» ли в него новая нагрузка в виде мощного электродвигателя? Выдержит ли ее изначально заложенный кабель?
  • Для такого прибора нужно прокладывать отдельную линию от силового щита и ставить индивидуальный автомат, как минимум. Просто так подключить его через розетку вряд ли получится; лучше не экспериментировать.
  • Практика переделок показывает, что даже если все сделано грамотно, возникнет еще одна проблема, с запуском. «Старт» мощного электродвигателя будет тяжелым, с длительной раскачкой, бросками напряжения. Такая перспектива мало кого устроит, тем более, если что-то собирается не на загородном участке, а на территории, прилегающей к жилому строению. Пока будет функционировать самодельная установка на основе этого двигателя, начнутся сбои в работе бытовых приборов. Проверено, и не раз.
  • Порядок работы по переделке зависит от внутренней схемы электродвигателя. В некоторых моделях в клеммную коробку выводится всего 3 провода, в других – 6.

В чем разница? В первом случае обмотки уже соединены по одной их традиционных схем – «звездой» или «треугольником», поэтому для маневра (в плане модификации) возможностей несколько меньше.

Вариантов немного – оставить изначальное включение или произвести разборку двигателя и перекоммутировать вторые концы. Если же выведены все шесть, то можно их соединять по любой из схем, без ограничений.

Главное – грамотно выбрать ту, которая будет оптимальной для конкретной ситуации (мощность электродвигателя, специфика его применения).

Схема

Учитывая, что мощность электродвигателя небольшая (значит, не придется при пуске его «срывать»), а запитывать его планируется от сети 220, то оптимальной схемой является «треугольник». То есть, здесь не нужно ориентироваться на высокие пусковые токи (их не будет), а потеря мощности практически сводится к нулю (можно не учитывать). Все сказанное наглядно демонстрирует рисунок.

Если в электродвигателе схема изначально собрана по «треугольнику», то переделывать в нем вообще ничего не нужно.

Расчет рабочих емкостей

Так как вместо 3-х фаз теперь будет лишь одна, она и подается на каждую из обмоток, но с небольшим сдвигом синусоиды. По сути, включением конденсаторов производится имитация питания электродвигателя от источника 380/3ф. Формулы для расчетов рабочих конденсаторов показаны на рисунках ниже.

Примечание:

  • Емкости к обмоткам электродвигателя подбираются не только по номиналу, но и по рабочему напряжению. Раз речь идет о переделке с 380 на 220, то Uр должно быть не меньше 400 В.
  • Немаловажен и такой фактор, как разновидность конденсаторов. Во-первых, они должны быть однотипными. Во-вторых, только не электролитическими. Оптимально, бумажные; например, устаревшей серии КГБ, МБГ (и их модификации) или ее современные аналоги. Они удобны в креплении (имеются проушины) и легко выдерживают скачки температуры, тока, напряжения.

Наглядно весь процесс в действии можно посмотреть на видео:

На практике инженерными расчетами мало кто из людей сведущих занимается. Есть определенные пропорции, позволяющие довольно точно подобрать рабочий конденсатор к конкретному электродвигателю.

Соотношение легко запомнить: на каждые 100 Вт мощности «движка» – 7 мкф рабочей емкости. То есть, для изделия на 2 кВт понадобится в обмотки включить конденсаторы по 7 х 20 = 140 мкф.

В чем сложность? Найти емкость с таким номиналом вряд ли получится. Есть простое решение – взять несколько конденсаторов и соединить параллельно. В результате небольших вычислений несложно подобрать нужное их количество с суммарной емкостью требуемой величины. Тем, кто забыл школу, можно подсказать – при таком способе соединения конденсаторов их емкости складываются.

Пусковой

Эта емкость нужна не всегда. Она ставится в схему лишь в том случае, если при пуске на вал двигателя создается значительная нагрузка. Примеры – мощное вытяжное устройство, циркулярная пила. А вот для той же газонокосилки вполне хватит и рабочих конденсаторов.

Расчет простой – номинал Сп должен превышать Ср в 2,5 (плюс/минус). Здесь предельной точности не требуется; величина пусковой емкости определяется примерно. Дальнейший анализ работы электродвигателя на разных режимах подскажет, увеличить ее или уменьшить.

Кстати, это относится и к рабочим конденсаторам. Дело в том, что все расчеты априори предполагают, что электродвигатель новый, ни разу не бывший в эксплуатации. А так как переделываются в основном изделия б/у, то в процессе работы выяснится, что не устраивает пользователя. Вариантов много – плохой запуск, быстрый нагрев корпуса и так далее.

Как организовать реверс

Иногда необходимо изменять направление вращения вала без дополнительных переделок. Это вполне возможно и для электродвигателя на 380, переведенного на питание 220. Как видно из рисунка, ничего сложного в этом нет, понадобится лишь переключатель на 2 позиции.

Есть трехфазные электродвигатели, которые могут работать от 220 В. Их включение в домовую сеть имеет свою специфику – только «звездой». Дело в том, что каждая из обмоток рассчитана для 127, и при соединении «треугольником» они попросту сгорят.

Меры безопасности при подключении трехфазного двигателя напоминание

Существую общие правила, требующие соблюдения при решении задачи, как из 220 сделать 380 вольт для асинхронного двигателя на 380 В:

  • Все подключения выполняются только с использованием отдельного автоматического выключателя.
  • Решать задачу по двигателю 380 вольт, как подключить и опробовать его, должны люди, прошедшие специальное обучение. Всегда помнить о мерах электробезопасности.
  • При наладочных работах под напряжением нужно пользоваться разделительным трансформатором.

Использование специального защищенного инструмента позволит не только быстро запустить двигатель, но и полностью обезопасить специалиста.

Полезные советы

  1. Конденсаторы всегда сохраняют на своих выводах высокое напряжение, поэтому эти приборы всегда надо огораживать.
  2. Работая с этими элементами, необходимо проводить их предварительную разрядку.
  3. Нельзя проводить подключение электродвигателя мощностью более 3,0 кВт к сети переменного тока. Сгорят автоматы и другие приборы, включенные в схему обвязки.
  4. Рабочее напряжение бумажных конденсаторов в два раза меньше от номинального, которое указано на их корпусе.

Видео

Источники

  • https://remboo.ru/inzhenernye-seti/elektrika/podklyuchenie-trehfaznogo-dvigatelya.html
  • https://electric-220.ru/kak-podkljuchit-trehfaznyj-dvigatel-na-220
  • https://tokzamer.ru/elektromontazh/kak-podkljuchit-dvigatel-380-na-220-shemy-i-sposoby-podkljucheniya
  • https://FB.ru/article/373816/dvigatel-na-podklyuchit-na-v-cherez-kondensatoryi-i-bez-kondensatorov
  • https://orenburgelectro.ru/oborudovanie/dvigatel-380v-podklyuchenie-k-seti-220v-sovety-elektrika.html
  • https://onlineelektrik.ru/eoborudovanie/edvigateli/kak-pravilno-provesti-podklyuchenie-elektrodvigatelya-380-na-220-volt.html
  • https://kelmochka.ru/kak-podklyuchit-trehfaznyj-dvigatel
  • https://orenburgelectro.ru/podklyuchenie/podklyuchenie-3h-faznogo-dvigatelya-na-220-sovety-elektrika.html
  • https://SamElectric.ru/promyshlennoe-2/podklyuchenie-dvigatelya-zvezdoj-i-treugolnikom-shemy-i-primery. html

 

 

Как вам статья?

Павел

Бакалавр «210400 Радиотехника» – ТУСУР. Томский государственный университет систем управления и радиоэлектроники

Написать

Пишите свои рекомендации и задавайте вопросы

Трехфазный двигатель, работающий от однофазного источника питания

Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, низкой стоимости, простоте обслуживания и эксплуатации. 3-фазный двигатель переменного тока использует 3-фазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. д.), но в некоторых реальных приложениях у нас есть только однофазные источники питания (1 фаза 110 В, 220 В, 230 В, 240 В и т. д.). .), особенно в бытовой технике. В случае запуска трехфазных машин от однофазных источников питания, есть 3 способа сделать это:

  1. Перемотка двигателя
  2. Купить частотно-регулируемый привод (ГГц)
  3. Купить преобразователь частоты/фазы

I: Перемотка двигателя
Необходимо выполнить некоторые работы по преобразованию работы трехфазного двигателя на однофазное питание. Здесь показано, как преобразовать 3-фазный двигатель 380 В для работы от однофазного источника питания 220 В.

Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла 120° сбалансированного тока через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, перестраиваемого для работы от однофазного источника питания, следует пояснить вопрос создания вращающегося магнитного поля однофазного асинхронного двигателя, так как запуск однофазного двигателя возможен только после установления вращающегося магнитного поля. . Причина, по которой он не имеет начального пускового момента, заключается в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, он закреплен относительно статора. В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора и не может создавать крутящий момент, поскольку вращающееся магнитное поле отсутствует, поэтому двигатель не может быть запущен. Однако положение двух обмоток внутри двигателя имеет разный пространственный угол. Если он пытается создать другой фазный ток, двухфазный ток имеет определенную разницу фаз во времени для создания вращающегося магнитного поля. Так статор однофазного двигателя должен иметь не только рабочую обмотку, но и обязательно иметь пусковую обмотку. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сместить одну из катушек обмотки с помощью конденсатора или индуктивности, чтобы две фазы могли проходить через другой ток для создания вращающегося магнитного поля для управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазное питание, мощность составляет всего 2/3 от первоначальной.

Метод перемотки
Чтобы использовать 3-фазный двигатель с 1-фазным источником питания, мы можем соединить любые 2-фазные катушки обмотки последовательно, а затем подключить к другой фазе. В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковая обмотка подключены к одному и тому же источнику питания, поэтому ток одинаков. Поэтому подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке последовательно, чтобы ток имел разность фаз. Для увеличения пускового момента на соединении можно использовать автотрансформатор для повышения напряжения однофазной сети с 220 В до 380 В, как показано на рисунке 1.9.0015

Общие малые двигатели имеют соединение Y. Для трехфазного асинхронного двигателя Y-типа клемма обмотки конденсатора C подключается к пусковой клемме автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.

Если вы не хотите увеличивать напряжение, источник питания 220 В также может использовать это. Поскольку исходная трехфазная обмотка напряжения питания 380 В теперь используется для питания 220 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.

Рис. 3 крутящий момент проводки слишком мал. Если вы хотите увеличить крутящий момент, вы можете подключить фазовый конденсатор к двухфазной обмотке вместе в катушке и использовать ее в качестве пусковой обмотки. Одиночная катушка, подключенная напрямую к источнику питания 220 В, см. рис. 4.

На рис. 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление пусковой обмотки или рабочей обмотки. .

Магнитный момент после последовательного соединения двух обмоток (одна из которых обратная) складывается из двух углов магнитного момента 60° (рис. 5). Магнитный момент намного выше, чем у магнитного момента 120° (показан на рис. 6), поэтому пусковой момент проводки на рис. 5 больше, чем у проводки на рис. 6.

Величина входного резистора R (рисунок 7) на обмотке пускателя должна быть замкнута на сопротивление фазы обмотки статора и должна выдерживать пусковой ток, равный 0,1-0,12-кратному пусковому моменту.

Выбор фазовращающего конденсатора
Рабочий конденсатор c=1950×Ie/Ue×cosφ (микрозакон), Ie, ue, cosφ – исходный номинальный ток двигателя, номинальное напряжение и мощность.
Общий рабочий конденсатор, используемый в однофазном питании трехфазного асинхронного двигателя (220 В): каждые 100 Вт используют от 4 до 6 микроконденсаторов. Пусковой конденсатор можно выбрать в зависимости от пусковой нагрузки, обычно в 1-4 раза превышающей рабочий конденсатор. Когда двигатель достигает 75%~80% номинальной скорости, пусковой конденсатор должен быть отключен, иначе двигатель сгорит.

Емкость конденсатора должна быть правильно подобрана, чтобы токи 11, 12 двух фазных обмоток были равны и равны номинальному току Ie, значит 11=12=Ie. Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить его к рабочему конденсатору. Когда пуск нормальный, отсоедините пусковой конденсатор.

Работа трехфазного двигателя от однофазного источника питания дает много преимуществ, перемотка упрощается. Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод можно применять только к двигателю мощностью 1 кВт или менее.

II: Купите частотно-регулируемый привод (ГГц)
ЧРП, сокращение от Variable Frequency Drive, это устройство для управления двигателем, работающим на регулируемых скоростях. Однофазный на 3-фазный ЧРП является лучшим вариантом для трехфазного двигателя, работающего от однофазного источника питания (1 фаза 220 В, 230 В, 240 В), он устранит пусковой ток во время запуска двигателя, заставит двигатель работать с нулевой скорости до полной. скорость плавная, плюс, цена абсолютно доступная. Доступны частотно-регулируемые приводы GoHz мощностью от 1/2 л.с. до 7,5 л.с., частотно-регулируемые приводы большей мощности могут быть настроены в соответствии с фактическими двигателями.

Преимущества использования частотно-регулируемого привода (ГГц) для трехфазного двигателя:

  1. Плавный пуск может быть достигнут путем настройки параметров частотно-регулируемого привода, время пуска может быть установлено на несколько секунд или даже десятков.
  2. Функция бесступенчатой ​​регулировки скорости, обеспечивающая оптимальную работу двигателя.
  3. Преобразуйте двигатель с индуктивной нагрузкой в ​​емкостную, что может увеличить коэффициент мощности.
  4. VFD имеет функцию самодиагностики, а также защиту от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций защиты.
  5. Можно легко запрограммировать с помощью клавиатуры для достижения автоматического управления.

III: Купите преобразователь частоты/фазы
В таких ситуациях также можно использовать преобразователь частоты или фазочастотный преобразователь, он может преобразовывать одну фазу (110 В, 120 В, 220 В, 230 В, 240 В) в три фазы (0- регулируемое напряжение 520 В) с чистым синусоидальным выходным сигналом, который лучше подходит для работы двигателя, а не для ШИМ-сигнала частотно-регулируемого привода. Они предназначены для лабораторных испытаний, самолетов, военных и других приложений, требующих высококачественных источников питания, это очень дорого.

Статья по теме: Влияние двигателя 60 Гц (50 Гц) на источник питания 50 Гц (60 Гц)

VFD Руководство по покупке | VFDs.

com

Поиск лучшего преобразователя частоты

Найти идеальный частотно-регулируемый привод или контроллер двигателя непросто. Многое зависит от уникальных потребностей вашего приложения и системы. Не существует универсальной модели или бренда, на который можно было бы опереться для каждого приложения.

Вот почему мы здесь, чтобы помочь, предоставив необходимую информацию для принятия правильного решения для вашей операции.

Хороший частотно-регулируемый привод должен быть надежным и простым в эксплуатации. В конечном итоге это сэкономит средства на коммунальных платежах, ремонте и замене оборудования.

Чем больше вы знаете о том, что нужно вашему приложению от частотно-регулируемого привода, тем легче выбрать правильный вариант.

Основы: зачем нужны частотно-регулируемые приводы

Частотно-регулируемые приводы (ЧРП) управляют скоростью асинхронных двигателей переменного тока и часто экономят энергию, особенно при работе таких устройств, как насосы и вентиляторы. При правильном размере ЧРП также можно использовать для преобразования фаз, если вам нужно запустить трехфазный двигатель, но вы ограничены однофазным питанием.

ЧРП изменяют электроэнергию от сети, чтобы точно запускать двигатель и обеспечивать правильную скорость и крутящий момент для оптимальной работы приложения. Приводы определяют скорость и крутящий момент двигателя, контролируя соотношение частоты и напряжения, которое обычно называют кривой вольт/герц.

Двигатели без частотно-регулируемых приводов часто изнашиваются раньше и потребляют значительно больше энергии, чем может потребоваться для приложения. Это особенно важно для приложений с изменяющимися требованиями к нагрузке или скорости.

Например, для поддержания установленного значения PSI или скорости потока в насосной системе можно использовать ЧРП для автоматического ускорения или замедления насоса в соответствии с непосредственными потребностями системы. Или на молотковых дробилках и больших конусных дробилках, таких как Metso HP4, частотно-регулируемый привод можно использовать для увеличения крутящего момента, когда скачок нагрузки требует большей мощности двигателя в течение короткого промежутка времени.

Общая картина

Подключить правильный привод к существующему двигателю довольно просто. Большая часть основной информации о двигателе и системе указана на паспортной табличке двигателя.

  • Мощность в л.с.
  • Ток при полной нагрузке (FLA)
  • Напряжение
  • Об/мин
  • Коэффициент эксплуатации
  • Номинальная мощность инвертора (не указана на заводской табличке)

Другая информация зависит от потребностей вашей системы и зависит от области применения.

  • Тип нагрузки (применение и его нагрузочные характеристики)
  • Диапазон скоростей и метод управления (требуется протокол связи ПЛК, сигнал 4–20 мА и т. д.)
  • Особые требования к корпусу (где будет монтироваться ЧРП, внутри/снаружи/и т. д.)

Технические характеристики привода

Ток при полной нагрузке (FLA)

Процесс выбора ЧРП начинается с тока полной нагрузки двигателя.

Соотнесите FLA вашего двигателя с номинальным током каждого частотно-регулируемого привода, который вы рассматриваете. Или не рискуйте и приобретите частотно-регулируемый привод с более высоким номинальным током, чем требуется вашему двигателю, чтобы обеспечить себе небольшую амортизацию для нагрузок с постоянным крутящим моментом и / или приложений, требующих большей силы во время запуска. Если у вас недостаточно большой диск, он будет отключаться каждый раз, когда вы пытаетесь включить питание.

Мощность в л.с. (л.с.)

​Нагрузка или мощность двигателя в л.с. — это отличный способ уточнить параметры поиска приводов, подходящих для вашего применения, но их не следует использовать в качестве прямого ориентира при определении требований к приводу. Из-за различных требований к нагрузке, таких как число оборотов в минуту (двигатель на 900 об/мин требует совсем другого тока, чем двигатель на 3600 об/мин), определение размера частотно-регулируемого привода только на лошадиных силах, скорее всего, вызовет у вас проблемы. Мы настоятельно рекомендуем вам использовать HP, чтобы сузить свой выбор, но использовать ампер (FLA), чтобы определить правильный ЧРП для вашего двигателя.

Напряжение и фаза

Вы должны согласовать напряжение частотно-регулируемого привода и двигателя с доступным напряжением на месте. Для низковольтных приложений в США это обычно 208, 230 или 460 В переменного тока. Для среднего напряжения (от 1000 вольт до 35 кВ) или других применений целесообразно обратиться за помощью к специалистам по применению или инженерам.

ЧРП в основном используются на промышленных объектах с трехфазным питанием. ЧРП может действовать как преобразователь фазы, если у вас есть трехфазный двигатель, но вы ограничены однофазным питанием.

Если ваша нагрузка составляет 3 лошадиные силы или меньше (приблизительно <10 ампер FLA), следует рассмотреть несколько приводов с однофазным входом. Если мощность вашего двигателя превышает 3 л.с., вы можете использовать привод, рассчитанный на трехфазный вход, при условии, что его номинальные характеристики правильно снижены.

Чтобы должным образом снизить номинальные характеристики частотно-регулируемого привода для работы в качестве преобразователя фазы для однофазной входной мощности, начните с двигателей FLA. Умножьте FLA двигателя на два и выберите частотно-регулируемый привод, рассчитанный на удвоение FLA двигателя. Например, если у вас есть двигатель мощностью 10 л.с. с током полной нагрузки 28 ампер, вам понадобится частотно-регулируемый привод мощностью более 56 ампер и мощностью около 20 л.с.

Имейте в виду, что для небольших магазинов или дома помните, что частотно-регулируемые приводы являются источником загрязнения окружающей среды номер один на планете. Они еще больше ухудшают качество электроэнергии при использовании в качестве преобразователя фазы. Поговорите со своим инженером по продажам, чтобы узнать, подходит ли вам использование линейного дросселя.

Применение (постоянный или переменный крутящий момент)

Теперь давайте рассмотрим работу, которую вы выполняете. Вам нужно запустить насос, вращающуюся печь или экструдер? Ответ определит, нужен ли вам привод с переменным или постоянным крутящим моментом.

Приводы с переменным крутящим моментом предназначены для простого центробежного оборудования, такого как вентиляторы и насосы. Эти приводы позволяют двигателю прикладывать только крутящий момент, необходимый для работы приложения на более низких скоростях. Центробежные установки редко превышают номинальный ток, поэтому приводам с переменным крутящим моментом требуется только одноминутная перегрузка по току 120 %.

ЧРП с постоянным крутящим моментом необходимы для более тяжелых применений, требующих постоянного крутящего момента на всех скоростях, таких как конвейеры, поршневые насосы, пробивные прессы и экструдеры. Например, конвейер работает постоянно, но ему требуется больше мощности, так как к ленте добавляется вес, поэтому ваш привод должен быть в состоянии справиться с разницей. Вот почему приводам с постоянным крутящим моментом требуется, по крайней мере, 150-процентная допустимая по току перегрузки в течение одной минуты для защиты от скачков нагрузки.

Вы можете подумать, что давайте перестраховаться и использовать постоянный крутящий момент даже для основного применения вентилятора. И если вы абсолютно не можете жить без этого вентилятора, это может быть полезной мерой предосторожности. Но это все равно, что купить бабушке спортивную машину — вы тратите много денег на производительность, которой никогда не воспользуетесь.

Диапазон скоростей

ЧРП могут занижать и повышать скорость двигателей. ЧРП может вращать двигатель настолько медленно, что его внутренний охлаждающий вентилятор не перемещает достаточно воздуха для поддержания работы двигателя. Следует принять надлежащие меры предосторожности для защиты двигателя, например, использовать отдельный вспомогательный охлаждающий вентилятор, если вы планируете снижать скорость двигателя.

ЧРП также может управлять двигателем быстрее, чем его номинальная скорость вращения. Однако имейте в виду, что при этом вы потеряете крутящий момент. Мы рекомендуем вам не превышать номинальную скорость двигателя более чем на 20% и перед этим проконсультироваться с производителем вашего двигателя, чтобы убедиться, что превышение скорости не приведет к аннулированию каких-либо гарантий.

Способ управления

При покупке частотно-регулируемого привода вам необходимо продумать способ управления. Будете ли вы управлять частотно-регулируемым приводом с клавиатуры на двери или с ПЛК?

Многим производителям требуется связь через Ethernet для передачи нужной информации от приводов к ПЛК и системам автоматизации производства. Все больше операций переносится на эти передовые системы связи, но некоторые недорогие приводы не включают эти опции. Поэтому, если вы хотите усовершенствовать свои системы в будущем, убедитесь, что вы получаете диски, которые не будут сдерживать вас. Ваш инженер по продажам сможет помочь вам выбрать правильный протокол связи, исходя из ваших потребностей и предпочтений.

Альтернативы задания скорости

  • Потенциометр скорости — позволяет оператору устанавливать скорость двигателя.
  • Цифровой блок программирования/дисплея — позволяет оператору программировать привод и устранять неполадки путем ввода значений с помощью клавиатуры со светодиодным или ЖК-дисплеем. Через этот дисплей также можно контролировать работу привода.
  • Повторитель аналогового сигнала – 4–20 мА или 0–10 В постоянного тока; должны быть предусмотрены частотно-регулируемые приводы с изолированным входом; необходимо использовать витую/экранированную пару и держать провод подальше от трехфазного переменного тока.
  • Селекторный переключатель выбора скорости — позволяет оператору выбирать из нескольких предустановленных скоростей. Также может использоваться, если скорость задается через ПЛК, а аналоговый выход недоступен.
  • Последовательная связь — позволяет частотно-регулируемым приводам обмениваться данными по сети, такой как MODBUS, PROFIBUS, DEVICENET или METASYS, что позволяет координировать и контролировать работу привода с ПК.

Особые требования к корпусу

Вы хотите убедиться, что ваш частотно-регулируемый привод будет работать в рабочей среде.

Тепло, влага, пыль и другие факторы могут повредить ваши частотно-регулируемые приводы и привести к сбоям в работе другого оборудования. Эти неисправности могут навредить кому-то. Мы видели, как металлическая пыль вызывает вспышки дуги, которые горят, как молнии.

Корпуса обеспечивают чистоту, охлаждение и долгую работу приводов. Мы видели правильно закрытые и обслуживаемые приводы, работающие в сложных условиях в течение 30 лет, и это число продолжает расти.

Вы можете приобрести автономный привод с соответствующим корпусом или поместить ЧРП в другой корпус. Корпуса приводов сертифицированы по нескольким типам, включая класс защиты от проникновения (IP), NEMA и UL.

  • Узнайте больше о рейтингах IP
  • Узнайте больше о рейтингах NEMA
  • Узнайте больше о корпусах UL

Если у вас возникли трудности с выбором системы корпусов, подходящей для вашей среды, ваш инженер по продажам поможет вам. чтобы помочь направить вас в правильном направлении.

Двигатели с инверторным режимом работы

ЧРП — лучший способ управления двигателем, но они сопряжены с проблемами. Приводы ШИМ имеют цифровой выход, который нагружает обмотки и подшипники двигателя.

В новых двигателях с инверторным номиналом используется провод, предназначенный для работы с высоким напряжением, которое могут создавать приводы. Вы также можете помочь защитить свои двигатели с помощью заземляющих колец, изолированных подшипников и специальных функций охлаждения, таких как отдельный вентилятор.

У нас есть полная линейка инверторных двигателей MDI, а также кольца заземления вала Aegis на тот случай, если вам потребуется модернизировать существующий двигатель, чтобы лучше подготовиться к нагрузкам, связанным с работой ЧРП.

Индивидуальные сборки и аксессуары

Как и в любом модном оборудовании, здесь достаточно аксессуаров и дополнений, чтобы голова закружилась. Но помимо освещения и дверных устройств, подробно описанных ниже, вы можете подумать о методах обхода частотно-регулируемого привода и подавления гармоник, когда будете думать о системе частотно-регулируемого привода.

Для байпаса мы рекомендуем вам использовать настоящую схему байпаса с тремя контакторами вместо альтернатив, предназначенных для экономии средств, а не надежности (двухконтактный и электронный байпас). Байпас с тремя контакторами позволит вам перебежать линию в случае отказа частотно-регулируемого привода. Кроме того, эта схема позволяет заменить частотно-регулируемый привод с очень ограниченным нарушением работы вашей системы.

Для подавления гармоник мы рекомендуем использовать полностью интегрированное решение, встроенное в тот же шкаф, что и сам ЧРП. Существует несколько методов подавления гармоник. Мы просто рекомендуем вам избегать дополнительной сложности размещения их в отдельных корпусах, которые подключаются к панели VFD.

Другие опции и аксессуары VFD включают, помимо прочего:

  • Разъединитель или автоматический выключатель
  • HOA (ручной/выключенный/автоматический переключатель)
  • Контрольные лампы
  • Байпас
  • Сетевой дроссель
  • Подавление гармоник
  • TVSS
  • Фильтр du/dt

Трудно определить идеальное сочетание приводов и аксессуаров, поскольку многое зависит от окружающей среды, области применения и нормативных требований.

Существует множество готовых приводов и аксессуаров на выбор, и все наши предложения на VFDs.com производятся хорошо проверенными и качественными производителями, которых мы поддерживаем.

Посетите страницу индивидуальной сборки частотно-регулируемого привода, чтобы узнать, какие преимущества вы можете получить от системы, специально разработанной и созданной для вас нашими инженерами, специалистами по применению и мастерской, сертифицированной по стандарту UL 508a.

Окончательные рекомендации

Как вы, надеюсь, уже поняли, вы не можете просто зайти в Интернет и купить любой старый диск. Не рискуйте покупать что-то, на что производитель не дает гарантии.

Но независимо от марки, если диск настроен неправильно, он не будет работать правильно. Мы видели, как люди устанавливают диски задом наперед и сразу же портят их. Эту и многие другие распространенные ошибки сделать проще, чем вы думаете. Работайте с квалифицированными установщиками, которые проникнут в вашу систему, чтобы интегрировать ваше оборудование и должным образом снизить риски безопасности.

Обратитесь в нашу службу технической поддержки, если у вас уже есть диск, который не работает.

Если у вас есть вопросы о ваших конкретных потребностях, позвоните по телефону 1-855-207-1721 и поговорите со специалистом по применению или отправьте нам электронное письмо.


Вам также могут понравиться


Теги

покупка частотно-регулируемого привода, руководство по покупке, как купить частотно-регулируемый привод, частотно-регулируемый привод, частотно-регулируемый привод, vfd, vsd

Пол Росситер

Президент

9 действующий президент Energy Management с более чем десятилетним опытом работы с электродвигателями, частотно-регулируемыми приводами и генераторами в области применения продуктов, а также технического обслуживания и обслуживания промышленных предприятий. Он помогал развивать наше подразделение электронной коммерции вместе с нынешним вице-президентом по продажам Люком Ланкастером. Помимо своих основных усилий по развитию компании, Пол время от времени пишет для нашего блога и делится своими обширными знаниями о продуктах и ​​приложениях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *