Принцип работы тепловой машины
Тепловой машиной называется такое устройство, которое преобразует теплоту в работу. Любая тепловая машина состоит из трех частей: теплоотдатчика, рабочего тела и теплоприемника. Теплоотдатчик имеет температуру Т1 и отдает некоторое количество теплоты Q1 рабочему телу. Рабочее тело (газ, пар, нагретая жидкость) совершает работу. Причем, не вся теплота Q1 превращается в работу, а только некоторая ее часть.
- Виды тепловых двигателей
- Тепловые энергоустановки что это такое
- Тепловые двигатели внешнего сгорания
- Виды тепловых двигателей
- Определение теплового насоса
- Источники:
Другая часть теплоты Q2 передается телу с более низкой температурой (Т2) – теплоприемнику. Таким образом, сущность работы тепловой машины заключается не только в получении теплоты Q1 от теплоотдатчика и совершении работы А, но и передаче некоторого количества теплоты Q2 теплоприемнику, температура которого ниже чем температура теплоотдатчика (Т1 > Т2). Вечный двигатель второго рода состоит из первых двух частей, то есть, теплота Q1 полностью переходит в работу А, а это невозможно. Там, где нет перепада температур (Т1 = Т2), невозможно превратить теплоту в работу.
Виды тепловых двигателей
К преимуществам тепловых насосов в первую очередь следует отнести экономичность: для передачи в систему отопления 1 кВт·ч тепловой энергии установке необходимо затратить всего 0,2-0,35 кВт·ч электроэнергии. Так как преобразование тепловой энергии в электрическую на крупных электростанциях происходит с кпд до 50 %, эффективность использования топлива при применении тепловых насосов повышается — тригенерация. Упрощаются требования к системам вентиляции помещений и повышается уровень пожарной безопасности. Все системы функционируют с использованием замкнутых контуров и практически не требуют эксплуатационных затрат, кроме стоимости электроэнергии, необходимой для работы оборудования.
Ещё одним преимуществом тепловых насосов является возможность переключения с режима отопления зимой на режим кондиционирования летом: просто вместо радиаторов к внешнему коллектору подключаются фэн-койлы или системы «холодный потолок». Тепловой насос надёжен, его работой управляет автоматика. В процессе эксплуатации система не нуждается в специальном обслуживании, возможные манипуляции не требуют особых навыков и описаны в инструкции.
Теплонасос компактен (его модуль по размерам не превышает обычный холодильник) и практически бесшумен. К недостаткам геотермальных тепловых насосов, используемых для отопления, следует отнести большую стоимость установленного оборудования, необходимость сложного и дорогого монтажа внешних подземных или подводных теплообменных контуров.
Недостатком воздушных тепловых насосов является более низкий коэффициент преобразования тепла, связанный с низкой температурой кипения хладагента во внешнем «воздушном» испарителе. Общим недостатком тепловых насосов является сравнительно низкая температура нагреваемой воды, в большинстве не более +50 °С ÷ +60 °С, причём, чем выше температура нагреваемой воды, тем меньше эффективность и надёжность теплового насоса.
Тепловые энергоустановки что это такое
На сегодняшний день энергетические станции используются для различных целей. К примеру, специальные энергоустановки, которые работают при помощи тепловой энергии – не самые применяемые в этой сфере, однако они обладают большим количеством преимуществ эксплуатации.
Подобное оборудование генерирует, передаёт и преобразовывает электроэнергию, донося её к потребителю. Несмотря на такой функционал, оборудование требует тщательной диагностики и обслуживания. Это предусматривает стандартные методы технической безопасности, организации управления и серьёзные ремонтные работы.
Общее представление об оборудовании
Конструкция энергоустановки представлена совокупностью систем и узловых агрегатов, работающих на добычу электроэнергии посредством переработки тепловой энергии в механическую. Основной механизм на подобных станциях – валовой электрический генератор. Помимо подвижного вала в конструкцию включается камера сгорания, из которой в итоге выделяется тепло. Немаловажным замечанием будет то, что данный способ подразумевает выброс газообразных веществ и пара.
Зачастую это касается станций, которые питаются посредством гидрологических комплексов. В таких коммуникациях повышается паровое давление, после чего пар двигает ротор турбины энергоустановки. Таким образом, вся энергия поступает на вал двигателя и генерирует электрический ток. Стоит заметить, что при этом теряется не вся тепловая энергия, а может использоваться, к примеру, для отопления.
Принципы работы тепловых энергоустановок
Одним из главных рабочих моментов выступает напряжение, благодаря которому питается станция. Зачастую комплексы оснащаются энергетическим потенциалом до тысячи вольт. В основном подобные станции локально применяются для снабжения промышленных сооружений.
Ко второму типу принадлежат комплексы, потенциал которых свыше тысячи вольт и используются для обеспечения энергией отдельно взятых районов, а иногда и городов. Их задачей является преобразовывать и распределять энергию. Немаловажным фактором служит мощность, которая колеблется от трёх до шести ГВт. Эти цифры зависят от вида применяемого топлива для сжигания в камере сгорания. Сегодня разрешено применять дизельное топливо, мазут, твёрдое топливо и газ.
Тепловые двигатели внешнего сгорания
- Двигатель Стирлинга — это тепловой аппарат, в котором газообразное или жидкое рабочее тело совершает движения в замкнутом пространстве. Это устройство основано на периодическом охлаждении и нагреве рабочего тела. При этом извлекается энергия, которая возникает при изменении объема рабочего тела. Двигатель Стирлинга может работать от любого источника тепла.
- Паровые машины. Главный их плюс — это простота и отличные тяговые качества, на которые не влияет скорость работы. При этом можно обходиться без редуктора. Этим паровая машина отличается в лучшую сторону от двигателя внутреннего сгорания, выдающего на малых оборотах недостаточное количество мощности. По этой причине паровую машину удобно использовать в качестве тягового двигателя. Недостатки: низкий КПД, невысокая скорость, постоянный расход воды и топлива, большой вес. Раньше паровые машины были единственным двигателем. Но они требовали много топлива и замерзали зимой. Затем их постепенно вытеснили электродвигатели, ДВС, паровые турбины и газовые, которые обладают компактностью, более высоким КПД, универсальностью и эффективностью.
Виды тепловых двигателей
Тепловые машины реализуют в своей работе превращение одного вида энергии в другой. Таким образом машины-устройства которые служат для преобразования одного вида энергии в другой. Преобразуют внутреннюю энергию в механическую. Внутренняя энергия тепловых машин образуется за счет энергии топлива
Парова́я маши́на -тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина двигатель внешнего сгорания, который преобразо-вывает энергию пара в механическую работу.
Двигатель внутреннего сгорания-это тип двигателя, тепловая машина, в которой химическая энергия топлива, сгорающего в рабочей зоне, преобразуется в механическую работу. Несмотря на то, что ДВС являются относительно несовершенным типом тепловых машин, он очень широко распространен, например в транспорте. Несмотря на то, что ДВС являются относительно несовершенным типом тепловых машин, он очень широко распространен, например в транспорте.
Газовая турбина это тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагр-етого газа преобразуется в механическую работу на валу. Состоит из копрессора, соединённого напрямую с турбиной, и камерой сгорания между ними. Паровая турбина — это тепловой двигатель непрерывного действия, в лопаточном аппарате которого потенциальная энергия сжатого и нагретого водяного пара преобразуется в кинетическую, которая в свою очередь совершает механическую работу на валу.
Реактивный двигатель создает необходимую для движения силу тяги посредством преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела. Рабочее тело с большой скоростью истекает из двигателя, и в соответствии с законом сохранения импульса образуется реактивная сила,толкающая двигатель в противоположном направлении.
Разнообразие видов тепловых машин указывает лишь на различие в конструкции и принципах преобразования энергии. Общим для всех тепловых машин является то, что они изначально у величивают свою внутреннюю энергию за счет сгорания топлива с последующим преобразованием внутренней энергии в механическую
Определение теплового насоса
Тепловой насос является одним из термотрансформаторних устройств, обеспечивающих подачу тепла от одних тел к другим, которые имеют различные температуры. Термотрансформаторы могут быть повышающими, если предназначены для передачи теплоты к телам с низкой температурой, и понижающими, если с их помощью передается теплота телам с высокой температурой.
Тепловой насос осуществляет передачу внутренней энергии от энергоносителя с низкой температурой к энергоносителя с более высокой температурой. Поскольку, в соответствии со вторым законом термодинамики, тепловая энергия без какого-либо внешнего воздействия может переходить только с высокого температурного уровня на низкий, для осуществления теплонасосного цикла необходимо использовать приводную энергию. Поэтому процесс передачи энергии в направлении, противоположном естественному температурному напору, осуществляется в круговом цикле.
Основное назначение этих установок — использование теплоты низкопотенциального источника, например окружающей среды. Основное применение в настоящее время находят три типа теплонасосных установок:
• компрессионные для теплоснабжения отдельных домов, а также для теплоснабжения отдельных промышленных цехов или установок;
• абсорбционные для теплоснабжения зданий и промышленных цехов;
• термоэлектрические для теплоснабжения отдельных помещений или небольших домов.
Источники:
- studopedia.su
- cknow.ru
- FB.ru
- Студопедия
- calc.ru
- lektsii.org
- WEBKURSOVIK.RU
- cyberpedia.su
- AG
- mr-build.ru
Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.
Принцип действия тепловой машины. Тепловая машина с наибольшим коэффициентом полезного действия
Тема: «Принцип действия тепловой машины. Тепловая машина с наибольшим коэффициентом полезного действия».
Форма: Комбинированный урок с использованием компьютерных технологий.
Цели:
- Показать важность применения тепловой машины в жизни человека.
- Изучить принцип работы реальных тепловых двигателей и идеального двигателя работающего по циклу Карно.
- Рассмотреть возможные пути повышения КПД реального двигателя.
- Развить у учащихся любознательность, интерес к техническому творчеству, уважение к научным достижениям ученых и инженеров.
План урока.
№ п/п | Вопросы | Время |
1 | Показать необходимость применения тепловых машин в современных условиях. | 2 |
2 | Повторение понятия «тепловой машины». Виды тепловых машин: ДВС (карбюраторный, дизельный), паровая и газовая турбины, турбореактивный и ракетный двигатели. | 7 |
3 | Объяснение нового теоретического материала. Схема и устройство тепловой машины, принцип работы, КПД. Цикл Карно, идеальная тепловая машина, её КПД. Сравнение КПД реальной и идеальной тепловой машины. | 15 |
4 | Решение задачи № 703 (Степанова), № 525 (Бендриков). | 8 |
5 | Выполнение компьютерного теста по теме. Работа с моделью тепловой машины. | 8 |
6 | Подведение итогов. Домашнее задание § 33, задачи № 700 и № 697 (Степанова) | 5 |
Теоретический материал
С давних времён человек хотел освободиться от
физических усилий или облегчить их при
перемещении чего-либо, располагать большей
силой, быстротой.
Создавались сказания о коврах самолётах,
семимильных сапогах и волшебниках, переносящих
человека за тридевять земель мановением жезла.
Таская тяжести, люди изобрели тележки, ведь
катить легче. Потом они приспособили животных –
волов, оленей, собак, больше всего лошадей. Так
появились повозки, экипажи. В экипажах люди
стремились к комфорту, всё более совершенствуя
их.
Стремление людей увеличить скорость ускоряло и
смену событий в истории развития транспорта. Из
греческого «аутос» – «сам» и латинского
«мобилис» – «подвижный» в европейских языках
сложилось прилагательное «самодвижущийся»,
буквально «авто – мобильный».
Оно относилось к часам, куклам-автоматам, ко всяким механизмам, в общем, ко всему, что служило как бы дополнением «продолжением», «усовершенствованием» человека. В ХVIII веке попробовали заменить живую силу силой пара и применяли к безрельсовым повозкам термин «автомобиль».
Почему же счёт возраста автомобиля ведут от первых «бензиномобилей» с двигателем внутреннего сгорания, изобретённых и построенных в 1885-1886 годах? Как бы забыв о паровых и аккумуляторных (электрических) экипажах. Дело в том, что ДВС произвёл подлинный переворот в транспортной технике. В течение длительного времени он оказался наиболее отвечающим идее автомобиля и потому надолго сохранил своё главенствующее положение. Доля автомобилей с ДВС составляет на сегодня более 99,9% мирового автомобильного транспорта. <Приложение 1>
Основные части теплового двигателя
В современной технике механическую энергию получают главным образом за счет внутренней энергии топлива. Устройства, в которых происходит преобразование внутренней энергии в механическую, называют тепловыми двигателями. <Приложение 2>
Для совершения работы за счет сжигания топлива в устройстве, называемом нагревателем, можно воспользоваться цилиндром, в котором нагревается и расширяется газ и перемещает поршень. <Приложение 3> Газ, расширение которого вызывает перемещение поршня, называют рабочим телом. Расширяется же газ потому, что его давление выше внешнего давления. Но при расширении газа его давление падает, и рано или поздно оно станет равным внешнему давлению. Тогда расширение газа закончится, и он перестанет совершать работу.
Как же следует поступить, чтобы работа теплового двигателя не прекращалась? Для того чтобы двигатель работал непрерывно, необходимо, чтобы поршень после расширения газа возвращался каждый раз в исходное положение, сжимая газ до первоначального состояния. Сжатие же газа может происходить только под действием внешней силы, которая при этом совершает работу (сила давления газа в этом случае совершает отрицательную работу). После этого вновь могут происходить процессы расширения и сжатия газа. Значит, работа теплового двигателя должна состоять из периодически повторяющихся процессов (циклов) расширения и сжатия.
Рисунок 1
На Рисунке 1 изображены графически процессы
расширения газа (линия АВ) и сжатия до
первоначального объема (линия CD). Работа
газа в процессе расширения положительна (AF > 0)
и численно равна площади фигуры ABEF. Работа
газа при сжатии отрицательна (так как AF < 0)
и численно равна площади фигуры CDEF. Полезная
работа за этот цикл численно равна разности
площадей под кривыми АВ и CD (закрашена
на рисунке).
Наличие нагревателя, рабочего тела и
холодильника принципиально необходимое условие
для непрерывной циклической работы любого
теплового двигателя.
Коэффициент полезного действия тепловой машины
Рабочее тело, получая некоторое количество теплоты Q1от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q1 — |Q2|. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия тепловой машины:
Коэффициент полезного действия тепловой
машины, работающей по замкнутому циклу, всегда
меньше единицы. Задача теплоэнергетики состоит в
том, чтобы сделать КПД как можно более
высоким, т. е. использовать для получения работы
как можно большую часть теплоты, полученной от
нагревателя. Как этого можно достигнуть?
Впервые наиболее совершенный циклический
процесс, состоящий из изотерм и адиабат, был
предложен французским физиком и инженером С.
Карно в 1824 г.
Цикл Карно.
Допустим, что газ находится в цилиндре, стенки и поршень которого сделаны из теплоизоляционного материала, а дно — из материала с высокой теплопроводностью. Объем, занимаемый газом, равен V1.
Рисунок 2
Приведем цилиндр в контакт с нагревателем (Рисунок 2) и предоставим газу возможность изотермически расширяться и совершать работу. Газ получает при этом от нагревателя некоторое количество теплоты Q1. Этот процесс графически изображается изотермой (кривая АВ).
Рисунок 3
Когда объем газа становится равным некоторому
значению V1’< V2, дно цилиндра
изолируют от нагревателя, после этого газ
расширяется адиабатно до объема V2, соответствующего
максимально возможному ходу поршня в цилиндре
(адиабата ВС). При этом газ охлаждается до
температуры T2 < T1.
Теперь охлажденный газ можно изотермически
сжимать при температуре Т2. Для этого его
нужно привести в контакт с телом, имеющим ту же
температуру Т2, т. е. с холодильником,
и сжать газ внешней силой. Однако в этом процессе
газ не вернется в первоначальное состояние —
температура его будет все время ниже чем Т1.
Поэтому изотермическое сжатие доводят до
некоторого промежуточного объема V2’>V1(изотерма CD). При этом газ отдает
холодильнику некоторое количество теплоты Q2,
равное совершаемой над ним работе сжатия.
После этого газ сжимается адиабатно до объема V1,
при этом его температура повышается до Т1(адиабата DA). Теперь газ вернулся в
первоначальное состояние, при котором объем его
равен V1, температура — T1, давление
— p1,и цикл можно повторить вновь.
Итак, на участке ABC газ совершает работу (А
> 0), а на участке CDA работа совершается
над газом (А < 0). На участках ВС и AD работа
совершается только за счет изменения внутренней
энергии газа. Поскольку изменение внутренней
энергии UBC
= –UDA, то и
работы при адиабатных процессах равны: АВС =
–АDA. Следовательно, полная работа,
совершаемая за цикл, определяется разностью
работ, совершаемых при изотермических процессах
(участки АВ и CD). Численно эта работа
равна площади фигуры, ограниченной кривой цикла ABCD.
В полезную работу фактически преобразуется
только часть количества теплоты QT, полученной
от нагревателя, равная QT1– |QT2|. Итак,
в цикле Карно полезная работа A = QT1 –
|QT2|.
Максимальный коэффициент полезного действия
идеального цикла, как показал С. Карно, может быть
выражен через температуру нагревателя (Т1)
и холодильника (Т2):
В реальных двигателях не удается осуществить цикл, состоящий из идеальных изотермических и адиабатных процессов. Поэтому КПД цикла, осуществляемого в реальных двигателях, всегда меньше, чем КПД цикла Карно (при одних и тех же температурах нагревателей и холодильников):
Из формулы видно, что КПД двигателей тем больше, чем выше температура нагревателя и чем ниже температура холодильника.
Задача № 703
Двигатель работает по циклу Карно. Как изменится КПД теплового двигателя, если при постоянной температуре холодильника 17оС температуру нагревателя повысить со 127 до 447оС?
Задача № 525
Определите КПД двигателя трактора, которому для выполнения работы 1,9 · 107Дж потребовалось 1,5 кг топлива с удельной теплотой сгорания 4,2 · 107Дж/кг.
Выполнение компьютерного теста по теме. <Приложение 4> Работа с моделью тепловой машины.
Тепловой двигатель — Энергетическое образование
Энергетическое образование
Меню навигации
ИСТОЧНИКИ ЭНЕРГИИ
ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ
ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ
ИНДЕКС
Поиск
4-тактный двигатель внутреннего сгорания. Рисунок 1. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп [1]
Тепловой двигатель — это тип двигателя (как двигатель в автомобиле) который производит макроскопическое движение от тепла. Когда люди потирают руки, трение превращает механическую энергию (движение наших рук) в тепловую энергию (руки нагреваются). Тепловые двигатели делают прямо противоположное; они берут энергию тепла (по сравнению с окружающей средой) и превращают ее в движение. Часто это движение превращается в электричество с помощью генератора.
Почти вся энергия, используемая для транспорта и электричества, поступает от тепловых двигателей. Горячие объекты, даже газы, обладают тепловой энергией, которую можно превратить во что-то полезное. Тепловые двигатели перемещают энергию из горячего места в холодное и переводят часть этой энергии в механическую энергию. Для работы тепловых двигателей требуется разница температур.
Изучение термодинамики изначально было вдохновлено попыткой получить как можно больше энергии от тепловых двигателей. [2] По сей день используются различные виды топлива, такие как бензин, уголь и уран. Все эти тепловые двигатели все еще работают в пределах, налагаемых вторым законом термодинамики. Это означает, что для нагревания газа используются различные виды топлива, а для избавления от отработанного тепла необходим большой холодный резервуар. Часто отработанное тепло уходит в атмосферу или в большой водоем (океан, озеро или река).
В зависимости от типа двигателя используются различные процессы, такие как воспламенение топлива при сгорании (бензин и уголь) или использование энергии ядерных процессов для производства тепла (уран), но конечная цель одна и та же: превратить тепло в работу. Наиболее известным примером тепловой машины является двигатель автомобиля, но большинство электростанций, таких как угольные, газовые и атомные, также являются тепловыми двигателями.
Двигатель внутреннего сгорания
- полный артикул
Двигатели внутреннего сгорания являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и поездах. Они названы так потому, что топливо воспламеняется, чтобы совершать работу внутри двигателя. Та же топливно-воздушная смесь выбрасывается в виде выхлопных газов. Хотя это чаще всего делается с помощью поршня, это также можно сделать с помощью турбины.
На рис. 1 показан пример двигателя внутреннего сгорания. Этот конкретный тип называется четырехтактным двигателем, который довольно распространен в автомобилях.
Внешняя тепловая машина
- полная статья
Внешние тепловые машины обычно представляют собой паровые машины, и они отличаются от внутренних тем, что источник тепла отделен от работающего газа. Эти тепловые двигатели обычно называют двигателями внешнего сгорания, потому что сгорание происходит вне двигателя. Например, внешнее горение будет использовать пламя для нагрева воды в пар, а затем использовать пар для вращения турбины. Это отличается от внутреннего сгорания, как в двигателе автомобиля, где бензин воспламеняется внутри поршня, работает, а затем выбрасывается.
В ядерных реакторах нет сгорания, поэтому используется более широкий термин «внешний тепловой двигатель». Реактор с кипящей водой на рис. 2 представляет собой внешнюю тепловую машину, как и другие атомные электростанции.
Рис. 2. Ядерный реактор с кипящей водой, представляющий собой внешнюю тепловую машину. [3]
Примеры тепловых двигателей
Внутреннее сгорание
- Поршневой двигатель
- Газовая турбина
- Реактивный двигатель
Внешнее сгорание
- ядерные реакторы, такие как реактор CANDU, реактор с водой под давлением
- угольная электростанция
- электростанция, работающая на природном газе
КПД
- основной артикул
КПД двигателя — это процент подводимой энергии, которую двигатель может преобразовать в полезную работу. Уравнение для этого: η = выходная мощность / входная энергия. Наиболее эффективные поршневые двигатели работают с КПД около 50%, а средняя угольная электростанция работает с КПД около 33%. Электростанции, построенные совсем недавно, имеют КПД более 40%.
Меньшие тепловые двигатели, например, в автомобилях, имеют выходную механическую мощность, измеряемую в лошадиных силах. Более крупные тепловые двигатели, такие как электростанции, измеряют мощность в МВт. Конечно, выходная мощность может быть измерена в любых единицах мощности, например, в ваттах.
Потребление тепловой машины также является мощностью, часто измеряемой в МВт. С силовой установкой есть и электрическая выходная мощность. Чтобы различать эти две мощности, тепловая мощность (входная мощность) измеряется в тепловых мегаваттах (МВт), а для производства электроэнергии выходная мощность измеряется в электрических мегаваттах (МВт). Для тепловых двигателей, которые обеспечивают движение вместо электричества, выходная мощность будет механической.
Когенерация
- основная статья
Тепловая машина имеет два побочных продукта: работу и тепло. Назначение большинства двигателей — производить работу, а тепло обрабатывается просто как отходы. Когенерация использует отработанное тепло для полезных вещей. Отопитель в автомобиле работает по принципу когенерации, отбирая отработанное тепло двигателя для нагрева воздуха, который прогревает салон. Вот почему работа отопителя автомобиля зимой мало влияет на расход бензина, а работа кондиционера летом может стоить примерно 10-20% расхода бензина автомобиля.
Для дальнейшего чтения
- Роторный двигатель
- Поршневой двигатель
- Работа
- Первый закон термодинамики
- Или просмотрите случайную страницу
Ссылки
- ↑ «File:4StrokeEngine Ortho 3D Small.gif — Wikimedia Commons», Commons.wikimedia.org, 2018. [Онлайн]. Доступно: https://commons.wikimedia.org/wiki/File%3A4StrokeEngine_Ortho_3D_Small.gif. [Доступ: 17 мая 2018 г.].
- ↑ «Энергия тонкой концепции» Дж. Куперсмит, глава 12, стр. 208, Oxford University Press, 2010.
- ↑ (2015, 4 января). Реактор с кипящей водой [Онлайн]. Доступно: http://www.nrc.gov/reading-rm/basic-ref/students/animated-bwr.html
Тепловые двигатели
Тепловые двигатели
Тепловая машина обычно использует энергию, полученную в виде тепла, для выполнения работы, а затем выбрасывает тепло, которое не может быть использовано для выполнения работы. Термодинамика – это наука о взаимосвязях между теплотой и работой. Первый закон и второй закон термодинамики ограничивают работу тепловой машины. Первый закон представляет собой применение закона сохранения энергии к системе, а второй устанавливает пределы возможного КПД машины и определяет направление потока энергии.
| Индекс Концепции тепловых двигателей | ||||
| Назад |
Диаграммы давление-объем (PV) являются основным инструментом визуализации для
| Индекс Концепции фотоэлектрических диаграмм Концепции тепловых двигателей | ||
| Назад |
Тепловая машина обычно использует энергию, полученную в виде тепла, для выполнения работы, а затем выбрасывает тепло, которое не может быть использовано для выполнения работы. Термодинамика – это наука о взаимосвязях между теплотой и работой. Первый закон и второй закон термодинамики ограничивают работу тепловой машины. Первый закон представляет собой применение закона сохранения энергии к системе, а второй устанавливает пределы возможного КПД машины и определяет направление потока энергии. Общие тепловые двигатели могут быть описаны моделью резервуара (слева) или диаграммой PV (справа) | Индекс Концепции фотоэлектрических диаграмм Концепции тепловых двигателей | ||||
|