преимущества и недостатки ⋆ diodov.net
Какой электрический ток лучше: постоянный или переменный ток? Чтобы дать ответ на данный вопрос нужно оценить их преимущества и недостатки по следующим основным направлениям: выработка, передача, распределение и потребление электроэнергии. Проще говоря, нужно ответить на следующие вопросы. Какой род тока проще и дешевле получить, затем передать его на большое расстояние, после чего распределить электроэнергию между потребителями. Потребители какого рода энергии более эффективны?
Сегодня преимущественное большинство электрической энергии, добываемой или генерируемой в мире, выпадет на переменный ток. И в первую очередь это связано с тем, что переменный ток проще преобразовывать из более низкого напряжения в более высокое и наоборот, то есть он проще в трансформации.
Место производство электрической энергии большой мощности, к сожалению пока что невозможно базировать в тех местах, где хотелось бы, то есть непосредственно рядом с потребителями. Например, мощную гидроэлектростанцию можно соорудить только на полноводной реке и то не в каждом месте. А конечный потребитель может находиться на расстоянии сотни и тысячи километров от электростанции. Поэтому очень важно обеспечить такие условия, чтобы минимизировать потери мощности в проводах линии электропередачи ЛЭП. В этом случае потери электроэнергии снижаются с ростом напряжения. Давайте остановимся на этом более подробно. Предположим, имеется некая электростанция, а точнее ее генератор, выдающий мощность 1000 кВт и нам необходимо передать эту мощность потребителю, который находится на расстоянии, например на 100 км от генератора.
Для сравнения электрическую энергию будем передавать напряжением 10 кВ и 100 кВ. При заданных мощности и напряжениях определим величины токов, протекающих в проводах.
I1 = P/U1 = 1000 кВт/10 кВ = 100 А.
I2 = P/U2 = 1000 кВт/100 кВ = 10 А.
Как мы видим, при увеличении напряжения в 10 раз, ток снижается тоже в 10 раз.
Потери электроэнергии в проводах ЛЭП и не только в них определяются квадратом тока, протекающего в них и сопротивлением самого провода. Для простоты расчет примем сопротивление проводов, равным 10 Ом. Подсчитаем потери мощности для обоих случаев.
Pпот1 = I12∙R = 1002∙10 = 100000 Вт = 100 кВт.
Pпот2 = I22∙R = 102∙10 = 1000 Вт = 1 кВт.
Теперь, как мы видим, с ростом напряжения в 10 раз потери электроэнергии снижаются в 100 раз! При более низком напряжении доля потерь в проводах составляет 10 % от мощности, выдаваемой генератором. А при более высоком напряжении эта доля составляет всего 0,1 %. Поэтому очень важным параметров сравнения родов тока является возможность повышать напряжение, а затем его снижать в конечных пунктах.
Можно было бы и не повышать напряжение, а для снижения потерь применять более толстые провода, но такой подход экономически не оправдан, поскольку медные провода стоят денег.
Также можно было бы и не повышать напряжение генератора, а создать такой генератор, который сразу бы выдавал высокое напряжения. Но здесь возникают сложности при изготовлении таких генераторов. Сложности связаны в основном с изоляцией высоковольтных элементов генератора. Короче говоря, изготовить трансформатор на высокое напряжение гораздо проще и дешевле, нежели генератор.
Преимущества переменного тока
Вопрос повышения и снижения переменного напряжения при нынешнем уровне технического развития решается гораздо проще, чем постоянного электрического тока.
Такие преобразования довольно просто выполняются с помощью относительно простого устройства – трансформатора. Трансформатор обладает высоким коэффициентом полезного действия, который достигает 99 %. Это значит, что не более одного процента мощности теряется при повышении или снижении напряжения. К тому же трансформатор позволяет развязать высокое напряжение с более низким, что для большинства электроустановок является очень весомым аргументом.
Применение трехфазной системы переменного тока позволяет еще больше повысить эффективность системы электроснабжения. Для передачи электричества аналогичной мощности потребуется меньше проводов, чем при однофазном переменном токе. К тому же трехфазный трансформатор меньше габаритов однофазного трансформатора равной мощности.
Электрические машины переменного тока, в частности асинхронные двигатели с короткозамкнутым ротором имеют гораздо проще конструкцию, чем двигатели постоянного тока. Главным преимуществом трехфазных асинхронных двигателей является отсутствие коллекторно-щеточного узла. Благодаря чему снижаются расходы на изготовление и эксплуатацию таких электрических машин. Кроме того за счет отсутствия коллекторно-щеточного узла асинхронные двигатели имеют в разы большую мощность по сравнению с двигателями постоянного тока.
Недостатки постоянного тока
Из выше изложенного следуют такие недостатки.
- Сложность повышения и снижения напряжения, то есть преобразования электроэнергии постоянного тока. В первую очередь это вызвано сложность конструкций преобразователей. Поскольку необходимы мощные полупроводниковые ключи, рассчитанные на высокое напряжение. Отсутствие которых приводит к большому числу последовательно и параллельно соединенных полупроводниковых приборов. В результате снижается надежность всего преобразователя, увеличивается стоимость и возрастают потери мощности.
- Электрические машины имеют более сложную конструкцию, поэтому менее надежны и более затратные, как в производстве, так и в эксплуатации.
- Сложности в развязке высокого и низкого напряжений.
Недостатки переменного тока
- Важнейшим недостатком переменного тока является наличие реактивной мощности. Как известно, конденсатор и катушка индуктивности проявляют свои реактивные свойства только в цепях переменного тока. Проще говоря, катушка и конденсатор создают реактивное сопротивление переменному току, но не потребляю его. В результате этого из полной мощности, отдаваемой генератором переменного тока, часть мощности не затрачивается на выполнение полезной работы, а лишь бесполезно циркулирует межу генератором и нагрузкой. Такая мощность называется реактивной и является вредной. Поэтому ее стараются минимизировать.
Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами. А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.
- Второй главный недостаток переменного тока заключается в том, что он протекает не по всему сечению проводника, а вытесняется ближе к его поверхности. В результате снижается площадь, по которой протекает электрический ток, что в свою очередь приводит к увеличению сопротивления проводника и к росту потерь мощности в нем.
Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.
Преимущества постоянного тока
- Главное преимущество электрической энергии постоянного тока – это отсутствие реактивной мощности. А это значит, что вся мощность, выработанная генератором, потребляется нагрузкой за вычетом потерь в проводах.
- Постоянный ток в отличие от переменного протекает по всему сечению проводника.
Указанные два пункта приводят к тому, что если передавать одну и ту же мощность при равных напряжениях постоянным и переменным токами, то потери мощности электроэнергии постоянным током были бы почти в два раза меньше, чем при переменном токе.
К тому же, если рассматривать такие бытовые электронные устройства как ноутбуки, компьютеры, телевизоры и т. п., то все они имеют блоки питания, преобразующие переменное напряжение 220 В (230 В) в постоянное напряжение более низкой величины. А такие преобразования связаны с частичной потерей мощности.
Кроме того, как было сказано ранее, трехфазный асинхронный двигатель (АД) можно подключить напрямую к сети 380 В, что вполне оправдано в том случае, когда не требуется изменять режим работы двигателя. Но если необходимо изменять частоту вращения его вала, то нужно на обмотки статора подавать напряжение, частота и амплитуда которого должны изменяться пропорционально, согласно закону Костенка. Для этого применяют трехфазные автономные инверторы (АИ), чаще всего инверторы напряжения. Такие инверторы должны получать питание от источника постоянного напряжения.
Также следует заметить, что последним временем начали очень широко применяться солнечные батареи, которые вырабатывают постоянный ток. К тому же, значительно возросла мощность аккумуляторных батарей и повысилась емкость суперконденсаторов, которые также относятся к источникам постоянного тока и с каждым днем находят все большее практическое применение.
Выводы: постоянный или переменный ток
Несмотря на все преимущества постоянного тока, значительная сложность, вызванная преобразованием больших мощностей, главным образом сказывается сложность повышения и понижения постоянного напряжения, сводит на нет указанные выше преимущества. Поэтому, до тех пор, пока не будут разработаны полупроводниковые ключи огромной мощности и соответствующие преобразователи на их основе, переменный ток остается вне конкуренции. К тому же сейчас уже применяются четырехквадрантные преобразователи или активные выпрямители, позволяющие скомпенсировать реактивную составляющую нагрузки, что позволяет получить коэффициент мощности, равный почти единице. Благодаря чему исключается потребление реактивной мощности.
Как вы видите, однозначного ответа на вопрос, какой ток лучше: постоянный или переменный, не существует. Следует сравнивать все преимущества и недостатки для конкретного случая.
В чём преимущества высоковольтных ЛЭП постоянного тока
В качестве примеров таких случаев можно привести следующие:
- Подводные кабели, высокое ёмкостное сопротивление которых приводит к большим потерям при передаче на переменном токе (например, кабельная линия протяженностью 250 км между Швецией и Германией).
- Передача электроэнергии от электростанции к потребителю на большие расстояния без промежуточных ответвлений, например, в удалённые районы.
- Увеличение пропускной способности существующих электрических сетей в тех случаях, когда установка дополнительных цепей является затруднительной или дорогим решением.
- Передача электроэнергии между несинхронизированными распределительными системами переменного тока.
- Уменьшение сечения проводов и количества опор для заданной пропускной способности ЛЭП, так как пропускная способность высоковольтных передач постоянного тока выше при заданном диаметре проводника.
- Подключение удалённых электростанций к распределительной сети.
- Повышение устойчивости системы без увеличения токов КЗ.
- Снижение потерь на корону по сравнению с высоковольтными линиями переменного тока той же мощности.
- Уменьшение стоимости ЛЭП, т.к. для высоковольтных передач постоянного тока требуется меньше проводников (например, для биполярной высоковольтной передачи постоянного тока требуется 2 проводника, а для высоковольтной линии переменного тока – 3).
Высоковольтная линия постоянного тока пропускной способностью 500 МВт – Энергообъединение Восток-Запад
Компания ABB ввела в эксплуатацию высоковольтную линию постоянного тока пропускной способностью 500 МВт, которая объединила электрические сети Ирландии и Великобритании. Эта ЛЭП обеспечивает передачу электроэнергии между двумя государствами, а также повышает надёжность и безопасность электроснабжения.
Энергообъединение Восток-Запад состоит из кабеля высокого напряжения длиной 262 км, из которых 186 км проходит по дну моря.
В результате передачи электроэнергии на переменном токе возникает зарядный ток ёмкости кабеля, вызывающий дополнительные потери мощности, тогда как этот факт играет минимальную роль при передаче электроэнергии на постоянном токе. Кроме того, мощность переменного тока расходуется на диэлектрические потери.
Высоковольтные линии постоянного тока могут передавать большую мощность по проводнику, т.к. при заданной номинальной мощности постоянное напряжение в линии постоянного тока ниже, чем амплитудное напряжение в линии переменного тока.
Поскольку величина напряжения определяет толщину изоляции и расстояние между проводниками, то расходы на высоковольтные передачи постоянного тока меньше по сравнению с аналогичными передачами переменного тока.
Линии постоянного тока не порождают электромагнитное поле сверхнизких частот (СНЧ), как это характерно для линий переменного тока. Хотя в прошлом высказывались некоторые опасения относительно вреда для здоровья, оказываемого такими полями, в том числе подозрения на рост уровня лейкемии, современное научное сообщество не рассматривает источники СНЧ, и связанные с ними поля, как вредные для здоровья.
Применение оборудования высоковольтных линий постоянного тока не исключает возникновение электрических полей, потому что всё равно существует градиент напряжения между проводником и землей. Но подобные электрические поля не оказывают влияние на здоровье.
Поскольку высоковольтная передача постоянного тока допускает передачу энергии между не синхронизированными системами переменного тока, то это позволяет увеличить устойчивость системы. Этот факт препятствует каскадному распространению аварии из одной части энергосистемы в другую, при этом электроэнергия продолжает поступать в систему и из нее в случае незначительных аварий.
Наличие указанных свойств послужило толчком к более широкому применению технологии высоковольтных передач постоянного тока. Перетоки мощности через линию передачи постоянного тока регулируются за счет использования систем управления или преобразовательных подстанций. Перетоки мощности не зависят от режима работы подключенных энергетических систем.
Таким образом, в отличие от линий переменного тока, связывающих две энергосистемы, межсистемные связи линий постоянного тока могут иметь сколь угодно низкую пропускную способность, исключая проблему слабых связей, и сами линии могут проектироваться с учетом оптимальных перетоков мощности.
Помимо этого, исключены проблемы синхронизации различных систем оперативного управления в разных энергетических системах. Высокоскоростные системы аварийного управления на высоковольтных линиях постоянного тока еще больше увеличивают устойчивость и надежность всей энергосистемы. Более того, регулирование перетоков мощности может быть использовано для устранения колебаний в энергосистемах или на высоковольтных линиях переменного тока, работающих параллельно.
Вышеупомянутые преимущества способствуют применению вставок постоянного тока для разбиения больших энергосистем на несколько несинхронизированых частей.
Например, быстро растущая энергосистема Индии построена в виде нескольких региональных систем, соединенных друг с другом высоковольтными линиями постоянного тока, компенсационными преобразователями с центральным управлением всеми элементами высоковольтной линии постоянного тока.
В Китае высоковольтные линии постоянного тока (800 кВ) так же станут основным средством для передачи больших мощностей на протяжённые расстояния от крупных ГЭС и термальных ЭС.
Источник: Electrical Engineering Portal
Переменный ток и постоянный ток
Мы используем файлы cookie, чтобы обеспечить вам максимально удобные условия пользования нашим веб-сайтом. Вы можете узнать о наших файлах cookie и о том, как отключить файлы cookie, в нашей Политике конфиденциальности. Если вы продолжите использовать этот веб-сайт без отключения файлов cookie, мы будем считать, что вы довольны их получением. Закрывать.
Редактировать эту статью
Последняя редакция 30 авг 2021
См.
вся история
Синусоидальная кривая, представляющая положительную и отрицательную фазы переменного тока. |
|
Электрический ток представляет собой поток заряда вдоль проводника, такого как медный провод. Когда он течет в одном направлении, он называется постоянным током (DC). Когда он периодически меняет направление, его называют переменным током (AC).
Переменный ток обычно используется для питания домов и предприятий, а также присутствует при передаче аудио- и радиосигналов по электрическим проводам. Постоянный ток типичен для аккумуляторов, питающих фонарики и другую бытовую технику, а также используется в некоторых промышленных приложениях.
Поскольку переменный ток периодически меняет направление, его можно охарактеризовать синусоидальной формой волны, где полупериоды над осью x представляют положительную фазу тока, а полупериоды ниже оси x представляют отрицательную фазу.
Переменный ток работает следующим образом: он начинается с нулевой позиции, достигает своего максимального значения (вершина положительного пика на синусоидальной кривой), возвращается к нулю, продолжается до максимума в противоположном направлении ( отрицательный, ниже оси x), затем вернуться к нулю, после чего цикл начинается снова. Количество этих циклов, совершаемых в секунду, называется частотой и измеряется в герцах (Гц).
Бытовая и коммерческая электроэнергия в Великобритании и других странах обычно имеет низкую частоту (50–60 Гц). Гораздо более высокие частоты встречаются в других приложениях, таких как телевидение (100 000 000 циклов в секунду (100 мегагерц (или 100 МГц), где 1 МГц составляет один миллион циклов в секунду)). Еще более высокие частоты в несколько тысяч мегагерц используются в микроволновых и радиолокационных приложениях, в то время как в мобильных телефонах они могут быть порядка 1000 МГц (одна тысяча миллионов герц или 1 гигагерц (ГГц).
Многие электронные устройства содержат полупроводники, для которых требуется низковольтный постоянный ток. Это означает, что такие устройства должны преобразовывать переменный ток высокого напряжения в постоянный ток низкого напряжения. Обычно это достигается с помощью штепсельной вилки, которая поставляется вместе с устройством.
Переменный ток имеет множество преимуществ по сравнению с постоянным. Обычно к ним относятся:
- Переменный ток можно относительно легко и экономично повысить или понизить с помощью трансформатора, соответствующего применению. Постоянный ток не может быть подключен через трансформатор.
- Поскольку напряжение переменного тока можно повышать (и понижать), его можно повысить до высоких уровней напряжения для передачи на большие расстояния, а затем понизить до более безопасных уровней для потребительского использования.
- Переменный ток может генерировать высокое напряжение. С ДК сложнее.
- Из-за высокого напряжения, которое может генерироваться, переменный ток может передаваться на большие расстояния.
- Передача на большие расстояния приводит к относительно низким потерям энергии из-за сопротивления.
- Переменный ток дешевле производить, чем постоянный.
- При необходимости переменный ток можно легко преобразовать в постоянный.
В 2007 году организация Energy Saving Trust подсчитала, что к 2020 году 45% потребления электроэнергии в домашнем хозяйстве будет приходиться на развлечения, компьютеры, гаджеты и светодиодное освещение, причем все они питаются от постоянного тока. Это, в сочетании с появлением генерации постоянного тока с помощью солнечных панелей и аккумуляторных батарей, привело к появлению концепции сетей постоянного тока (а не переменного тока).
Для получения дополнительной информации см.: Электрические сети постоянного тока.
- Электрические сети постоянного тока.
- Электроснабжение.
- Потребление энергии.
- Аккумулятор энергии.
- Ископаемое топливо.
- Гидроэнергетика.
- Микросети.
- Микрогенерация.
- Нефть — глобальная перспектива.
- Мощность.
- Фотоэлектрический инвертор.
- Возобновляемая энергия.
- Однофазные и трехфазные системы переменного тока.
- Солнечные фотоэлектрические элементы.
- Будущее электроэнергетики Великобритании.
- Виды топлива.
- Вт.
- Доля
- Добавить комментарий
- Отправьте нам отзыв
Почему мы используем электричество переменного тока?
Опубликовано Oozle Media 30 марта 2018 г.
Когда вы думаете об электричестве, которое вы используете в своем доме, вы, вероятно, не будете думать о том, какого оно типа, откуда оно берется и даже как оно работает. Мы поняли это. Электричество — не самая волнующая тема, как бы лично мы ни любили говорить об этом…
При этом СУЩЕСТВУЕТ разница в типах существующего электричества, и если вы когда-нибудь слышали, как кто-то говорит, что ваш дом использует электричество переменного тока (AC), то для этого есть довольно веская причина. Так что, если вы здесь, потому что вам интересно, в чем разница между электричеством переменного и постоянного тока (DC), или вы просто хотите знать, что такое, черт возьми, переменный ток, мы можем вам помочь.
Начало электричества
Прежде чем мы сможем что-то сделать, мы должны предоставить вам краткую историю электричества. Мы знаем, никто не любит уроки истории, но для того, чтобы понять, где мы находимся сегодня, нужно знать, с чего мы начинали. Итак, давайте начнем с краткого обзора:
Вы все слышали об открытии Бенджамином Франклином электричества с помощью всего эксперимента с молнией и воздушным змеем, верно? Вот краткое напоминание, если вы забыли детали.
Это помогло проложить путь Томасу Эдисону, который позже изобрел множество различных электрических машин, таких как фонограф и лампочка. После впечатляющей работы Франклина и Эдисона дела пошли довольно быстро. Люди начали использовать электричество по-разному, но главным из них было освещение домов в конце 1800-х и начале 19 века.00-х.
Использование электричества постоянного тока
После открытия и изобретения электричества в целом вскоре стало очевидно, что компании, производящие электричество, могут получать прибыль от домовладельцев, использующих его. Электричество постоянного тока. Постоянный ток использовался около 20 лет, прежде чем Никола Тесла, большой сторонник электричества переменного тока, изобрел машину, которая могла преобразовывать постоянный ток в переменный. Он боролся несколько лет, прежде чем люди поняли, что переменный ток более эффективен. В 1896 AC был официально назван типом электричества, которое будет использоваться в домах и на предприятиях.
Но почему?
Разница между переменным и постоянным током
Как уже говорилось, переменный ток означает переменный ток, что означает, что электричество движется вперед и назад, а не только в одном направлении, как постоянный ток. Основным фактором, повлиявшим на выбор переменного тока вместо постоянного, было то, что переменный ток более эффективен. Его способность путешествовать вперед и назад сделала его способным путешествовать на большие расстояния. Таким образом, он может питать больше домов. Кроме того, с ним было намного проще и менее опасно работать, что было огромным преимуществом, когда его собирались использовать в домах населения.
«Производить и транспортировать переменный ток на большие расстояния относительно легко. При высоких напряжениях (свыше 110 кВ) меньше потерь энергии при передаче электроэнергии. Более высокие напряжения означают более низкие токи, а более низкие токи означают меньшее выделение тепла в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовать в высокое напряжение и обратно с помощью трансформаторов». – Sparkfun
Сегодня мы все еще используем электричество переменного тока для большинства наших домов и предприятий.
Вопрос: Используем ли мы когда-нибудь электричество постоянного тока?
Ответ: Да, но редко. Энергия постоянного тока вырабатывается всеми современными солнечными панелями, хотя затем эта мощность преобразуется в переменный ток с помощью трансформатора, чтобы ее могли использовать дома и предприятия. Энергия постоянного тока используется в автомобильных аккумуляторах, портативных солнечных системах и любых слаботочных устройствах.
Надеемся, что это ответило на все ваши вопросы об электричестве переменного и постоянного тока. Нам повезло, что у нас есть такой управляемый способ питания наших домов и устройств. Однако это не означает, что это безопасно или что любой может выполнять электрические работы! Вот почему важно, чтобы профессионал вносил какие-либо изменения или обслуживал ваши электрические системы в вашем доме или офисе.