Электродвигатель постоянного тока: принцип работы и действия, устройство, характеристики
Содержание
- Краткая история создания
- Принцип действия электродвигателя постоянного тока
- Устройство электродвигателя постоянного тока
- Особенности и характеристики электродвигателя постоянного тока
Сейчас невозможно представить нашу жизнь без электродвигателей. Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне. Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.
Краткая история создания
Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.
Принцип действия электродвигателя постоянного тока
На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию. Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю. Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.
Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.
Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).
Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников. Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно. Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).
Устройство электродвигателя постоянного тока
Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.
Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.
В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.
Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.
Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.
Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.
Особенности и характеристики электродвигателя постоянного тока
Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:
- Экологичность. При работе не выделяются вредные вещества и отходы.
- Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
- Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
- Простота управления.
- Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
- Легкость запуска.
- Небольшие размеры.
- Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.
Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:
- Их себестоимость, следовательно, и цена достаточно высока.
- Для подключения к сети необходим выпрямитель тока.
- Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
- При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.
Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.
Как работает мотор-колесо? Об электровелосипедах
Мотор-колесо – бесщеточный синхронный электромотор постоянного тока, интегрированный в ступицу колеса. Электрические моторы данного типа не используют вспомогательных механизмов для передачи мощности от электродвигателя к колесу и лишены компонентов, подверженных трению, кроме подшипников в редукторных моделях. Электромотор, передаточный механизм и колесо объединены в общий узел, что придает ему высокую эксплуатационную надежность.
Типы мотор-колес
Ступичные электродвигатели предназначаются для монтажа в переднюю или заднюю вилку велосипеда (с различными размерами дропаута оси), бывают разной мощности, с выполненной заспицовкой в обод или без нее. В зависимости от внутреннего устройства они бывают:
- Редукторные – с интегрированным планетарным редуктором. Такие модели компактны и легковесны, не создают сопротивление при езде с отключенным мотором, имеют отличные тяговые качества и обеспечивают уверенное преодоление подъемов. Но они производятся небольшой мощности – 250–500 Вт, поэтому высокие скорости развить не позволяют.
- Прямого привода – безредукторные. Производятся мощностью от 500 В до нескольких киловатт и позволяют получить скорость вплоть до 100 км/ч и более. Но прямоприводные моторы уступают редукторным моделям по тяговым характеристикам, а в отключенном состоянии оказывают сопротивление при накате. Для комфортных поездок по холмистой местности мощность МК прямого привода должна составлять не менее 1500 Вт.
Различия в устройстве мотор-колес
При наличии планетарного редуктора возрастает крутящий момент мотор-колеса, но ограничиваются его скоростные возможности. При использовании редукторного МК вы сможете легко преодолевать подъемы, но при езде на прямолинейных участках скорость будет умеренной – в среднем до 30–35 км/ч.
У прямоприводных моделей все наоборот – доступны более высокие скорости, но крутящий момент ниже, т.е. тяговые характеристики у редукторного МК на 350 Вт и прямоприводного МК на 1500 Вт примерно одинаковы. По надежности редукторные модели немного уступают прямоприводным, т.к. в конструкции редуктора есть планетарная передача с 3 шестернями из пластика. Их примерный ресурс – 6000–9000 км пробега. Зато редукторные модели обеспечивают лучший накат и позволяют легче крутить педали при отключенном моторе.
Прямоприводные модели имеют предельно простую и надежную конструкцию без шестеренок, более высокий КПД и способность к рекуперации энергии. Внутри такого устройства находятся статор и ротор – жестко зафиксированная ось колеса с обмотками и втулка с мощными постоянными магнитами. Это традиционная схема 3-фазного двигателя переменного тока.
Как работает мотор-колесо?
Независимо от того, как устроено электроколесо – с редуктором или без него, принцип его работы одинаков. В статоре в виде многолучевой звезды из электротехнической стали появляется магнитное поле. При взаимодействии с постоянными магнитами оно инициирует вращение ротора. На лучах статора есть обмотки, и когда по ним идет ток, лучи превращаются в электромагниты. Они притягивают постоянные магниты на роторе и инициируют вращение ротора.
Для получения нужной мощности и равномерного вращения колеса статор имеет несколько десятков обмоток. Но в результате они соединяются в 3 и чередуются по окружности: 1-2-3-1-2-3… На противоположной стороне на роторе есть магниты из редкоземельных материалов. Когда на обмотки поступают импульсы напряжения, происходит активизация их магнитных качеств, взаимодействие с магнитами и вращение ротора.
Импульсы поступают на обмотки поочередно и четко в нужные моменты времени. Определяют эти моменты находящиеся на статоре датчики Холла. Они отслеживают взаимное расположение ротора и статора, откликаются на магнитное поле и отправляют сигналы на контроллер. На основании полученных сведений контроллер своевременно подает на обмотки статора импульсы напряжения. Обмотки превращаются в электромагниты, вступают во взаимодействие с постоянными магнитами ротора и заставляют его вращаться. Наглядно принцип работы бесколлекторного электродвигателя представлен на картинке.
Элементы управления мотор-колесом
Интенсивность вращения ступичного электромотора регулируется рычагом газа. При смене его положения меняется число импульсов напряжения, подаваемых в единицу времени на обмотки. В результате меняется и скорость езды. В ручки тормоза также встроены датчики, которые в свою очередь отключают подачу питания на электрический двигатель при торможении.
В предыдущей статье блога VoltBikes рассказывается о том, какое напряжение лучше выбрать для электровелосипеда.
Как работают двигатели и как правильно выбрать двигатель для любого проекта
Двигатели можно найти практически везде. Это руководство поможет вам узнать об электродвигателях, доступных типах и о том, как правильно выбрать двигатель. Основные вопросы, на которые необходимо ответить при принятии решения о том, какой двигатель наиболее подходит для применения, — это какой тип выбрать и какие технические характеристики имеют значение.
Как работают двигатели?
Электродвигатели работают путем преобразования электрической энергии в механическую для создания движения. Сила создается в двигателе за счет взаимодействия между магнитное поле и обмотка переменного (AC) или постоянного (DC) тока. С увеличением силы тока увеличивается и сила магнитного поля. Помните о законе Ома (V = I*R); напряжение должно увеличиваться, чтобы поддерживать тот же ток, когда сопротивление увеличивается.
Электродвигатели имеют множество применений. Традиционное промышленное использование включает воздуходувки, станки и электроинструменты, вентиляторы и насосы. Любители обычно используют двигатели в небольших приложениях, требующих движения, таких как робототехника или модули с колесами.
Типы двигателей:
Существует много типов двигателей постоянного тока , но наиболее распространенными являются щеточные или бесщеточные. Существуют также вибрационные двигатели, шаговые двигатели и серводвигатели.
Щеточные двигатели постоянного тока являются одними из самых простых и используются во многих бытовых приборах, игрушках и автомобилях. Они используют контактные щетки, которые соединяются с коммутатором для изменения направления тока. Они недороги в производстве, просты в управлении и обладают отличным крутящим моментом на низких скоростях (измеряется в оборотах в минуту или об/мин). Несколько недостатков заключаются в том, что они требуют постоянного обслуживания для замены изношенных щеток, имеют ограниченную скорость из-за нагрева щеток и могут генерировать электромагнитный шум из-за дугового разряда щеток.
Щеточный двигатель постоянного тока
Бесщеточные двигатели постоянного тока используют постоянные магниты в своем роторном узле. Они популярны на рынке хобби для самолетов и наземных транспортных средств. Они более эффективны, требуют меньше обслуживания, производят меньше шума и имеют более высокую удельную мощность, чем коллекторные двигатели постоянного тока. Они также могут производиться серийно и напоминают двигатель переменного тока с постоянным числом оборотов в минуту, за исключением того, что они питаются от постоянного тока. Однако есть несколько недостатков, в том числе то, что ими трудно управлять без специального регулятора, и они требуют низких пусковых нагрузок и специальных редукторов в приводных приложениях, что приводит к более высоким капитальным затратам, сложности и экологическим ограничениям.
Бесщеточный двигатель постоянного тока
Вибрационные двигатели используются для приложений, требующих вибрации, таких как мобильные телефоны или игровые контроллеры. Они генерируются электродвигателем и имеют неуравновешенную массу на приводном валу, которая вызывает вибрацию. Их также можно использовать в неэлектронных зуммерах, которые вибрируют для подачи звука или для сигналов тревоги или дверных звонков.
Вибрационный двигатель
Когда требуется точное позиционирование, 9Шаговые двигатели 0003 — ваш друг. Они используются в принтерах, станках и системах управления технологическими процессами и рассчитаны на высокий удерживающий момент, что дает пользователю возможность переходить от одного шага к другому. У них есть система контроллера, которая определяет положение с помощью сигнальных импульсов, отправляемых драйверу, который интерпретирует их и отправляет пропорциональное напряжение на двигатель. Они относительно просты в изготовлении и управлении, но они постоянно потребляют максимальный ток. Небольшое расстояние между шагами ограничивает максимальную скорость, и при высоких нагрузках шаги можно пропускать.
Шаговый двигатель
Серводвигатели — еще один популярный двигатель на рынке хобби, который используется для управления положением без точности. Их популярные приложения включают приложения дистанционного управления, такие как игрушечные радиоуправляемые автомобили и робототехника. Они состоят из двигателя, потенциометра и схемы управления и в основном управляются с помощью широтно-импульсной модуляции (ШИМ) путем отправки электрических импульсов на провод управления. Сервоприводы могут быть как переменного, так и постоянного тока. Сервоприводы переменного тока могут выдерживать более высокие скачки тока и используются для промышленного оборудования, тогда как сервоприводы постоянного тока предназначены для небольших любительских приложений. Чтобы узнать больше о сервоприводах, ознакомьтесь с нашими Как работают серводвигатели статья.
Существует три основных типа двигателей переменного тока: асинхронные, синхронные и промышленные.
Асинхронные двигатели называются асинхронными двигателями, поскольку они не вращаются с одинаковой постоянной скоростью или медленнее, чем частота, подаваемая на питание. Скольжение , разница между фактической и синхронной скоростью, необходимо для создания крутящего момента , крутящей силы, вызывающей вращение, в асинхронных двигателях. Магнитное поле, окружающее ротор этих двигателей, вызвано наведенным током.
Ротор синхронных двигателей вращается с постоянной скоростью при подаче переменного тока. Их магнитное поле создается постоянными магнитами. Промышленные двигатели предназначены для трехфазных систем большой мощности, таких как конвейеры или воздуходувки. Двигатели переменного тока также можно найти в бытовой технике и других устройствах, таких как часы, вентиляторы и дисководы.
На что обратить внимание при покупке двигателя:
Есть несколько характеристик, на которые необходимо обратить внимание при выборе двигателя, но наиболее важными являются напряжение, ток, крутящий момент и скорость (об/мин).
Ток питает двигатель, и слишком большой ток может повредить двигатель. Для двигателей постоянного тока важны рабочий ток и ток останова. Рабочий ток — это среднее значение тока, которое двигатель должен потреблять при обычном крутящем моменте. Ток останова прикладывает достаточный крутящий момент, чтобы двигатель работал на скорости останова или 0 об/мин. Это максимальный ток, который должен потреблять двигатель, а также максимальная мощность, умноженная на номинальное напряжение. Радиаторы важны, если двигатель постоянно работает или работает при напряжении выше номинального, чтобы предотвратить плавление катушек.
Напряжение используется для поддержания протекания чистого тока в одном направлении и для преодоления обратного тока. Чем выше напряжение, тем выше крутящий момент. Номинальное напряжение двигателя постоянного тока указывает наиболее эффективное напряжение во время работы. Обязательно примените рекомендуемое напряжение. Если вы приложите слишком мало вольт, двигатель не будет работать, тогда как слишком много вольт может привести к короткому замыканию обмоток, что приведет к потере мощности или полному разрушению.
Рабочие значения и значения опрокидывания также необходимо учитывать при крутящем моменте. Операционная крутящий момент — это величина крутящего момента, на которую рассчитан двигатель, а крутящий момент при остановке — это величина крутящего момента, создаваемого при подаче питания от скорости останова. Вы всегда должны смотреть на требуемый рабочий крутящий момент, но в некоторых приложениях вам нужно знать, насколько далеко вы можете толкать двигатель. Например, для колесного робота хороший крутящий момент равен хорошему ускорению, но вы должны убедиться, что крутящий момент достаточно велик, чтобы поднять вес робота. В данном случае крутящий момент важнее скорости.
Скорость или скорость (об/мин) может быть сложной для двигателей. Общее правило заключается в том, что двигатели работают наиболее эффективно на самых высоких скоростях, но это не всегда возможно, если требуется редуктор. Добавление шестерен снизит КПД двигателя, поэтому учитывайте также снижение скорости и крутящего момента.
Это основные параметры, которые следует учитывать при выборе двигателя. Учитывайте назначение приложения и потребляемый им ток для выбора соответствующего типа двигателя. Характеристики приложения, такие как напряжение, ток, крутящий момент и скорость, определят, какой двигатель наиболее подходит, поэтому обязательно обратите внимание на его требования.
Есть ли у вас дополнительные советы по выбору двигателей? Сообщите нам по телефону [email protected] .
Как работают электродвигатели?
Криса Вудфорда. Последнее обновление: 25 октября 2021 г.
Щелкни выключателем и получи мгновенное питание — как бы это понравилось нашим предкам
электродвигатели! Вы можете найти их во всем, от
электропоезда на дистанционном управлении
автомобили — и вы можете быть удивлены, насколько они распространены. Сколько электрических
моторы сейчас с тобой в комнате? Есть, наверное, два
в компе для начала крутится один твой хард
ездить и еще один питание вентилятора охлаждения. Если
вы сидите в спальне, вы найдете моторы в фенах и многих
игрушки; в ванной — в вытяжках и электробритвах;
на кухне моторы есть практически в каждом приборе, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей.
Электродвигатели зарекомендовали себя как одни из лучших
изобретения всех времен. Давайте разберем некоторые и узнаем, как они
Работа!
Фото: Даже маленькие электродвигатели на удивление тяжелые.
Это потому, что они набиты плотно намотанной медью и тяжелыми магнитами.
Это двигатель от старой электрической газонокосилки. Медно-красная штука в сторону
Перед осью с прорезями в ней находится коллектор, удерживающий двигатель.
вращение в том же направлении (как описано ниже).
Содержание
- Как электромагнетизм заставляет двигатель двигаться?
- Правило левой руки Флеминга
- Принцип работы электродвигателя — теория
- Как работает электродвигатель на практике
- Универсальные двигатели
- Электродвигатели прочие
- Узнать больше
Как электромагнетизм заставляет двигатель двигаться?
Основная идея электродвигателя очень проста: вы подаете в него электричество с одного конца, а
ось
(металлический стержень) вращается на другом конце, давая вам возможность управлять
машина какая-то. Как это работает на практике? Как именно
ваш
преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, мы
вернуться в прошлое почти на 200 лет.
Предположим, вы берете кусок обычной проволоки, делаете из нее большую петлю,
и положить его между полюсами мощной, постоянной подковы
магнит.
Теперь, если вы подключите два конца провода к батарее,
провод будет прыгать
кратко. Удивительно, когда ты видишь это впервые. Это
прямо как по волшебству! Но есть совершенно научная
объяснение. Когда
электрический ток начинает ползти по проводу, он создает
магнитное поле вокруг него. Если разместить провод рядом с постоянным
магнит, это временное магнитное поле взаимодействует с постоянным
поле магнита. Вы узнаете, что два магнита, расположенные рядом друг с другом
либо притягивать, либо отталкивать. Точно так же временный магнетизм
вокруг провода притягивает или отталкивает постоянный магнетизм от
магнит, и это то, что заставляет провод прыгать.
Правило левой руки Флеминга
Вы можете определить направление, в котором будет прыгать провод, используя
удобная мнемоника (помощь памяти), называемая правилом левой руки Флеминга (иногда
называется моторным правилом).
Вытяните большой, указательный и указательный пальцы левой
стороны, так что все три находятся под прямым углом. Если ты укажешь вторым пальцем
в направлении Течения
(который течет от положительного к
отрицательный полюс аккумулятора), и первый
палец в
направление поля (которое
течет от северного к южному полюсу
магнит), ваш большой палец будет
показать направление, в котором провод
Движения.
Это…
- Первый палец = Поле
- Второй палец = Текущий
- ThuMb = Движение
Несколько слов о токе
Если вас смущает мое утверждение, что ток течет от плюса к минусу,
это просто историческая условность. Такие люди, как Бенджамин Франклин, который помог выяснить
тайну электричества еще в 18 веке считали потоком положительных зарядов,
так что это перетекло от положительного к отрицательному. Мы называем эту идею обычным током.
и до сих пор используют его в таких вещах, как правило левой руки Флеминга. Теперь у нас есть лучшие идеи о том, как
электричество работает, мы склонны говорить о токе как о потоке электронов, от отрицательного к положительному, в противоположное направление условного тока. Когда вы пытаетесь вычислить вращение двигателя или генератора,
обязательно помните, что ток означает обычный ток , а не поток электронов.
Как работает электродвигатель — теория
Связь между электричеством, магнетизмом и движением была первоначально
открыт в 1820 году французским физиком Андре-Мари.
Ампер
(1775–1867), и это фундаментальная наука, лежащая в основе электродвигателя. Но если
мы хотим превратить это удивительное научное открытие в более практическое
немного технологии для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, сделавшими это, были англичане Майкл Фарадей (179 г.1–1867)
и Уильям Стерджен (1783–1850) и американец
Джозеф Генри (1797–1878). Вот как они
пришли к своему гениальному изобретению.
Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, чтобы
эффективно
два параллельных провода, проходящих через магнитное поле. Один из них
отводит от нас электрический ток по проводу и другому
один возвращает ток обратно. Поскольку ток течет в
противоположных направлениях в проводах, правило левой руки Флеминга говорит нам, что
два провода будут двигаться в противоположных направлениях. Другими словами, когда мы
включите электричество, один из проводов поднимется вверх и
другой будет двигаться вниз.
Если бы катушка проволоки могла двигаться вот так, она бы вращалась
непрерывно — и мы были бы на пути к созданию электрического
мотор. Но этого не может случиться с нашей нынешней установкой: провода будут
быстро запутаться. Не только это, но если бы катушка могла вращаться далеко
достаточно, что-то еще случилось бы. Как только катушка достигла вертикали
положение, он перевернулся бы, поэтому электрический ток
протекать через него в обратном направлении. Теперь силы на каждом
сторона катушки перевернута. Вместо непрерывного вращения в
в том же направлении, он будет двигаться в том же направлении, в котором только что пришел!
Представьте электропоезд с таким двигателем: он будет держать
шаркая взад и вперед на месте, даже не двигаясь
в любом месте.
Фото: Электрик ремонтирует электродвигатель
на борту авианосца.
Блестящий металл, который он использует, может выглядеть как золото.
но на самом деле это медь,
хороший проводник, который намного дешевле. Фото Джейсона Якобовица предоставлено
ВМС США.
Как работает электродвигатель на практике
Есть два способа решить эту проблему. Один из них заключается в использовании своего рода
электрический ток, который периодически меняет направление, известное
как переменный ток (АС).
В виде небольшого, на батарейках
двигатели, которые мы используем дома, лучшим решением будет добавить компонент
называется коммутатором
концы катушки. (Не беспокойтесь о бессмысленных технических
имя: это немного старомодное слово «коммутация» немного похоже на
слово «коммутировать». Это просто означает переход туда и обратно в одном и том же
таким образом, что коммутировать означает путешествовать туда и обратно.) В своей простейшей форме
коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и
его работа заключается в изменении направления электрического тока в катушке каждый раз, когда
катушка поворачивается на пол-оборота. Один конец катушки присоединен к
каждой половине коммутатора. Электрический ток от аккумулятора
подключается к электрическим клеммам двигателя.
Они подают электроэнергию в коммутатор через пару свободных
разъемы, называемые щетками,
сделанный
либо из кусочков графита (мягкий углерод, похожий на карандашный
«свинец») или тонкие отрезки упругого металла,
который (как
название предполагает) «кисть» против коммутатора. С
коммутатор на месте, когда электричество течет по цепи,
катушка будет постоянно вращаться в одном и том же направлении.
Работа: Упрощенная схема частей электрического
мотор. Анимация: как это работает на практике. Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается.
наполовину. Это означает, что сила на каждой стороне катушки всегда
толкая в том же направлении, что заставляет катушку вращаться по часовой стрелке.
Такой простой экспериментальный двигатель не способен
много силы. Мы можем увеличить вращающую силу (или крутящий момент)
что
двигатель можно создать тремя способами: либо мы можем иметь более
мощный постоянный магнит, или мы можем увеличить электрический ток
течет по проводу, или мы можем сделать катушку, чтобы у нее было много
«витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки.
На практике двигатель также имеет постоянный магнит, изогнутый в виде дуги.
круглой формы, так что он почти касается катушки проволоки, которая вращается
внутри него. Чем ближе друг к другу магнит и катушка, тем
большее усилие, которое может создать двигатель.
Несмотря на то, что мы описали ряд различных деталей, вы можете представить двигатель состоящим всего из двух основных компонентов:
- По краю корпуса двигателя находится постоянный магнит (или магниты), который остается неподвижным, поэтому он называется статором двигателя.
- Внутри статора есть катушка, установленная на оси, которая вращается с высокой скоростью, и это называется ротором. Ротор также включает в себя коллектор.
Универсальные двигатели
9Такие двигатели постоянного тока 0010 отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемых автомобилей или электробритв), но вы не найдете их во многих бытовых приборах. Мелкие бытовые приборы (например, кофемолки или электрические блендеры) обычно используют так называемые универсальные двигатели , которые могут питаться как от переменного, так и от постоянного тока. В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает питание от постоянного или переменного тока, который вы подаете:
- При подаче постоянного тока электромагнит работает как обычный постоянный магнит и создает магнитное поле, направленное всегда в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном направлении.
- Однако, когда вы подаете переменный ток, ток, протекающий через электромагнит, и ток, протекающий через катушку , оба меняются местами, точно в шаге, поэтому сила, действующая на катушку, всегда в одном направлении, и двигатель всегда вращается по часовой стрелке. или против часовой стрелки. Что с коммутатором? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.
Анимация: Как работает универсальный двигатель: Электропитание питает как магнитное поле, так и вращающуюся катушку. С питанием постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании переменным током как магнитное поле, так и ток катушки меняют направление каждый раз, когда ток питания меняется на противоположное. Это означает, что сила на катушке всегда направлена в одну сторону.
Фото: Внутри типичного универсального двигателя: Основные детали внутри среднего двигателя от кофемолки, который может работать как от постоянного, так и от переменного тока. Серый электромагнит по краю — это статор (статическая часть), питающийся от катушек оранжевого цвета. Обратите также внимание на прорези в коллекторе и упирающиеся в него угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких вещах, как электропоезда, во много раз больше и мощнее, чем этот, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения. который питает универсальные двигатели.
Другие типы электродвигателей
Фото: Электродвигатели бывают всех форм и размеров. В этом школьном автобусе есть
заменили старый грязный дизельный двигатель на большой электродвигатель
(белая рамка) для уменьшения загрязнения воздуха.
Фото Денниса Шредера предоставлено
NREL (Национальная лаборатория возобновляемых источников энергии).
В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит. Большие двигатели переменного тока (используемые в таких вещах, как фабричные машины) работают немного по-другому: они пропускают переменный ток через противоположные пары магнитов для создания вращающегося магнитного поля, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться вокруг. Подробнее об этом можно прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его, так что статор будет эффективно выложен в длинную непрерывную дорожку, ротор сможет катиться по ней по прямой линии. Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).
Еще одна интересная конструкция — бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, с несколькими статичными железными катушками в центре и постоянным магнитом, вращающимся вокруг них, а коммутатор и щетки заменяются электронной схемой. Вы можете прочитать больше в нашей основной статье о ступичных двигателях.
Шаговые двигатели, которые поворачиваются на точно контролируемые углы, являются разновидностью бесщеточных двигателей постоянного тока.
Узнайте больше
Похожие статьи на нашем сайте
- Батареи
- Электроника
- История электричества
- Двигатели
- Ступичные двигатели
- Асинхронные двигатели
- Линейные двигатели
- Шаговые двигатели
Книги
Для младших читателей
- Электричество для юных мастеров: веселые и легкие проекты «Сделай сам» Марка де Винка. Maker Media, 2017. Увлекательное практическое введение в базовые проекты в области электричества, в том числе три из них связаны со сборкой электродвигателей.
- Electric Mischief: гаджеты на батарейках, которые дети могут собрать, Алан Бартоломью. Отпечатки лап, 2008.
Для читателей старшего возраста
- Электродвигатели и приводы: основы, типы и применение Остина Хьюза и Билла Друри, Newnes (Elsevier), 2019.
- Управление электродвигателем, Санг-Хун Ким, Elsevier, 2017.
- Практическое руководство по электродвигателям Ирвинга Готтлиба, Newnes (Elsevier), 1997.
Артикул
- 200 лет назад Фарадей изобрел электродвигатель: после того, как Фарадей опубликовал свои результаты, его наставник Эллисон Марш обвинила его в плагиате. IEEE Spectrum, 27 августа 2021 г. Увлекательная история изобретения Фарадея и последствий, которые оно вызвало.
- Новый электродвигатель может повысить эффективность электромобилей, скутеров и ветряных турбин Лоуренса Ульриха. IEEE Spectrum, 19 августа 2019 г. Двигатели с высоким крутящим моментом — ключ к нашему быстрому электрическому будущему.
- «Как распечатать электродвигатель» Карла Бугеи. IEEE Spectrum, 24 августа 2018 г. Можно ли «напечатать» двигатель так же, как вы делаете печатную плату?
- Заткнись о батареях: ключ к лучшему электромобилю — более легкий двигатель Мартин Доппельбауэр и Патрик Винцер. IEEE Spectrum, 22 июня 2017 г. Немецкие инженеры считают, что лучшие двигатели, а не лучшие аккумуляторы, являются ключом к завтрашнему всепобеждающему электромобилю.
- Power and Electric Motors Ретта Аллена. Wired, ноябрь 2011 г. Почему электродвигатели потребляют гораздо больше энергии, когда они только запускаются?
Упражнения
Вот несколько простых и безопасных занятий по сборке моторов, которые вы можете попробовать сами. В порядке сложности первый — это простой винтовой двигатель; последний представляет собой полноценный коллекторный двигатель постоянного тока.
- Как сделать простейший электродвигатель от Windell Oskay. Evil Mad Scientist, 7 августа 2006 г. Можно ли сделать мотор из батарейки, винта, магнита и полоски проволоки?
- Очень простой винтовой двигатель, разработанный доктором Джонатаном Хэйром, Creative Science Center. Еще одно описание винтового двигателя.
- Собери простой электродвигатель !: Science Buddies, 16 октября 2017 г. Более сложный двигатель с вращающейся катушкой.
- Соберите простой двигатель постоянного тока со щетками и коллектором.
(короткая версия) и «Создание двигателя постоянного тока шаг за шагом» (пошаговая версия) Тима Каллинана. Как сделать дешевый и простой коллекторный двигатель постоянного тока из бытовых материалов примерно за 5 долларов.
Патенты
Патенты являются отличным источником подробной технической информации и чертежей. Вот некоторые из них, которые я откопал из базы данных USPTO:
- Электродвигатель Ганса Э. Ницше, 13 апреля 1925 г.