Как обозначают кинематическую принципиальную схему: Принципиальная кинематическая схема | это… Что такое Принципиальная кинематическая схема?

Принципиальная кинематическая схема | это… Что такое Принципиальная кинематическая схема?

Кинематическая схема револьверной головки токарного станка

Принципиальная кинематическая схема  — это такая схема, на которой показана последовательность передачи движения от двигателя через передаточный механизм к рабочим органам машины (например, шпинделю станка, режущему инструменту, ведущим колёсам автомобиля и др.) и их взаимосвязь.

На кинематических схемах изображают только те элементы машины или механизма, которые принимают участие в передаче движения (зубчатые колёса, ходовые винты, валы, шкивы, муфты и др.) без соблюдения размеров и пропорций.

Содержание

  • 1 Нормативные документы
  • 2 Правила выполнения кинематических схем
  • 3 Чтение кинематических схем
  • 4 Литература
  • 5 См. также

Нормативные документы

Стандарты, регламентующие условные обозначения и выполнение кинематических схем:

  • ГОСТ 2. 770-68 (2000) ЕСКД. Обозначения условные графические на схемах. Элементы кинематики.
  • ГОСТ 2.703-2011. ЕСКД. Правила выполнения кинематических схем.
  • ISO 3952 Kinematic diagrams — Graphical symbols.

Правила выполнения кинематических схем

Корпусные части составляющей единицы (машины или механизма) не показывают совсем или наносят их контур сплошными тонкими линиями. Пространственные кинематические механизмы изображают обычно в виде развёрнутых схем в ортогональных проекциях. Их получают путём размещения всех осей в одной плоскости. Такие схемы позволяют прояснить последовательность передачи движения, но не показывают действительного расположения деталей механизма. Кинематические схемы допускается выполнять в аксонометрии.

Все детали (звенья) на кинематических схемах изображают условно в виде графических символов (ГОСТ 2.770-68 (2000)), которые лишь раскрывают принцип их работы. Соединения смежных звеньев, которое допускает их относительное движение, называют кинематической парой. Наиболее распространённые кинематические пары: шарнир, ползун и направляющая, винт и гайка, шаровой шарнир. Допускается использовать нестандартные условные графические обозначения, но с соответствующими пояснениями на схеме. На кинематической схеме разрешается изображать отдельные элементы схем других видов, которые непосредственно влияют на их работу (например, электрические или гидравлические).

Кроме условных графических обозначений, на кинематических схемах дают указания в виде надписей, поясняющих изображённый элемент. Например, указывают тип и характеристику двигателя, диаметры шкивов, модуль и число зубьев зубчатых колёс и др. Взаимное расположение звеньев на кинематической схеме должно соответствовать начальному, среднему или рабочему положению иполнительных органов механизма или машины. Если звено при работе изделия меняет своё положение, то на схеме допускается указывать её крайние положения тонкими штрихпунктирными линиями. На кинематической схеме звеньям присваивают номера в порядке передачи движения, начиная от двигателя. Валы номеруют римскими цифрами, остальные элементы — арабскими. Порядковый номер элемента проставляют на полочке выносной линии. Под полочкой указывают основные характеристики и параметры кинематического звена.

На кинематических схемах валы, оси, стержни изображают сплошными основными линиями; зубчатые колёса, червяки, звёздочки, шкивы, кулачки — сплошными тонкими линиями.

Чтение кинематических схем

Читать кинематическую схему начинают от двигателя, как источника движения всех подвижных деталей механизма. Определяя последовательно по условным обозначениям каждый элемент кинематической цепи, устанавливают его назначение и характер передачи движения.

PUMA-робот…… и его кинематическая модель

Литература

  1. Артоболевский И. И. Теория машин и механизмов. М. Наука 1988.

См. также

  • Схема изделия
  • Механизм
  • Машина

Обозначение элементов кинематических схем

Конструкторы, разрабатывающие различные машины и механизмы, часто выполняют кинематические схемы. При этом они руководствуются нормами и требованиями, изложенными в таком основополагающем документе, как ГОСТ 2.770–68.

 

В технике под схемой понимается графическое изображение, на котором показаны составные части изделия, их конструктивные особенности, а также существующие между ними связи с помощью упрощенных обозначений и символов. В составе пакетов конструкторской документации схемы играют достаточно важную роль. Они наличествуют как в общих описаниях изделий, инструкциях по их установке, наладке и эксплуатации. Схематические чертежи оказывают неоценимую помощь персоналу, занимающемуся монтажом, пуско-наладкой, ремонтом машин, механизмов и отдельных агрегатов. Схемы дают возможность быстро разобраться в том, каковы функциональные связи существуют между механическими, гидравлическими, электрическими и другими звеньями и системами технических устройств.

Когда разработка какой-либо машины только начинается, конструкторы от руки вычерчивают общий набросок будущего изделия, то есть составляют его первоначальную схему. На ней условно отображаются все основные узлы, а также показываются взаимосвязи между ними. Только после того, как принципиальная схема устройства отработана, начинается разработка чертежей и прочей конструкторской документации.

В современном машиностроении наибольшее применение находят те машины, в которых передача движения основывается на механическом, гидравлическом или электрическом принципе функционирования.

Предназначением кинематических схем является отражение той связи, в которой состоят рабочий механизм и привод. Следует отметить, что в современных автомобилях, станочном и прочем технологическом оборудовании механические передачи отличаются большой сложностью и содержат множество элементов. Поэтому для того, чтобы правильно создавать схемы таких конструкций, нужно прекрасно знать все условности, которые используются для графического изображения принципа работы машины или механизма без того, чтобы уточнять их конструктивные особенности. К примеру, кинематические схемы станочного оборудования отражают то, каким именно образом вращательное движение вала электродвигателя сообщается шпинделю, причем контур станка показывается (или не показывается) тонкой линией.

Если на схемах используются нестандартизованые условные обозначения, то они требуют пояснений. Что касается внешних очертаний и схематических разрезов, то на схемах они изображаются упрощенно, в соответствии с тем, какую именно конструкцию имеет каждый элемент изделия.

На схематических изображениях от каждой составной их части проводятся линии-выноски. От сплошных линий они начинаются стрелками, а от плоскостей – точками. На полках линий-выносок указываются порядковые номера позиций. При этом для таких элементов, как валы, используются римские цифры, а для остальных – арабские цифры. Под полками линий-выносок указываются параметры и основные характеристики составных частей схем.

 

 

 

Кинематические уравнения и кинематические графики

Урок 4 этого раздела в классе физики был посвящен использованию графиков скорость-время для описания движения объектов. В этом Уроке подчеркивалось, что наклон линии на графике скорость-время равен ускорению объекта, а площадь между линией и осью времени равна смещению объекта. Таким образом, графики зависимости скорости от времени можно использовать для определения числовых значений и отношений между величинами перемещения (d), скорости (v), ускорения (a) и времени (t). В Уроке 6 основное внимание уделялось использованию четырех кинематических уравнений для описания движения объектов и предсказания численных значений одного из четырех параметров движения — смещения (d), скорости (v), ускорения (a) и время (т). Таким образом, теперь есть два метода решения задач, связанных с числовыми соотношениями между перемещением, скоростью, ускорением и временем. В этой части Урока 6 мы исследуем отношения между этими двумя методами.

Пример задачи — графическое решение

Рассмотрим объект, который движется с постоянной скоростью +5 м/с в течение 5 секунд, а затем ускоряется до конечной скорости +15 м/с в течение следующих 5 секунд. секунды. Такое словесное описание движения может быть представлено графиком скорость-время. График показан ниже.

Горизонтальная часть графика изображает движение с постоянной скоростью, что соответствует словесному описанию. Участок графика с положительным наклоном (т. е. с наклоном вверх) изображает положительное ускорение, соответствующее словесному описанию объекта, движущегося в положительном направлении и ускоряющегося с 5 м/с до 15 м/с. Наклон линии можно вычислить, используя коэффициент подъема относительно пробега. Между 5 и 10 секундами скорость линии увеличивается с 5 м/с до 15 м/с и продолжается от 5 до 10 с. Это общий подъем +10 м/с и общий пробег 5 с. Таким образом, уклон (соотношение подъем/спуск) равен (10 м/с)/(5 с) = 2 м/с 2 . По графику скорость-время определено ускорение объекта, равное 2 м/с 2 в течение последних пяти секунд движения объекта. Смещение объекта также можно определить с помощью графика зависимости скорости от времени. Площадь между линией на графике и осью времени представляет смещение; эта область принимает форму трапеции. Как обсуждалось в Уроке 4, площадь трапеции можно приравнять к площади треугольника, лежащего на вершине площади прямоугольника. Это показано на диаграмме ниже.

Общая площадь равна площади прямоугольника плюс площадь треугольника. Расчет этих площадей показан ниже.

Прямоугольник Треугольник
Площадь = основание * высота
Площадь = (10 с) * (5 м/с)

Площадь = 50 м

Площадь = 0,5 * основание * высота
Площадь = 0,5 * (5 с) * (10 м/с)

Площадь = 25 м

Общая площадь (прямоугольник плюс треугольник) равна 75 м.кв. Таким образом, перемещение объекта за 10 секунд движения составляет 75 метров.

Приведенное выше обсуждение иллюстрирует, как графическое представление движения объекта может использоваться для извлечения числовой информации об ускорении и смещении объекта. После построения график зависимости скорости от времени можно использовать для определения скорости объекта в любой момент времени в течение 10 секунд движения. Например, скорость объекта в 7 секунд может быть определена путем считывания значения координаты y в координате x 7 секунд. Таким образом, графики скорость-время могут быть использованы для выявления (или определения) числовых значений и взаимосвязей между величинами смещения (d), скорости (v), ускорения (a) и времени (t) для любого заданного движения.

 

Пример задачи — решение с использованием кинематического уравнения

Теперь рассмотрим то же словесное описание и соответствующий анализ с использованием кинематического уравнения. Вербальное описание движения было следующим:

Объект, который движется с постоянной скоростью +5 м/с в течение 5 секунд, а затем ускоряется до конечной скорости +15 м/с в течение следующих 5 секунд

Кинематические уравнения могут быть применены к любому движению, для которого ускорение является постоянным. Поскольку это движение имеет две отдельные стадии ускорения, любой кинематический анализ требует, чтобы параметры движения для первых 5 секунд не смешивались с параметрами движения для последних 5 секунд. В таблице ниже перечислены заданные параметры движения.

t = 0 с — 5 с т = 5 с — 10 с
v i = 5 м/с
v f = 5 м/с

t = 5 с

a = 0 м/с 2

v i = 5 м/с
v f = 15 м/с

t = 5 с

Обратите внимание, что ускорение в течение первых 5 секунд указано как 0 м/с 2 , несмотря на то, что это явно не указано. Фраза постоянная скорость указывает на движение с нулевым ускорением. Ускорение объекта за последние 5 секунд можно рассчитать с помощью следующего кинематического уравнения.

v f = v i + a*t

Здесь показаны подстановка и алгебра.

15 м/с = 5 м/с + а*(5 с)
15 м/с — 5 м/с = a*(5 с)

10 м/с = a*(5 с)

(10 м/с)/(5 с) = a

a = 2 м /с 2

Это значение ускорения объекта за время от 5 с до 10 с согласуется со значением, определяемым по наклону линии на графике скорость-время.

Смещение объекта за все 10 секунд также можно рассчитать с помощью кинематических уравнений. Поскольку эти 10 секунд включают в себя два совершенно разных интервала ускорения, расчеты для каждого интервала необходимо выполнять отдельно. Это показано ниже.

t = 0 с — 5 с т = 5 с — 10 с
d = v i *t + 0,5*a*t 2
d = (5 м/с)*(5 с) +0,5*(0 м/с 2 )*(5 с) 2
d = 25 м + 0 м
д = 25 м
d = ((v i + v f )/2)*t
d = ((5 м/с + 15 м/с)/2)*(5 с)
d = (10 м/с)*(5 с)
д = 50 м

Общее перемещение за первые 10 секунд движения составляет 75 метров, что соответствует значению, определенному по площади под линией на графике скорость-время.

Анализ этого простого движения иллюстрирует значение этих двух представлений движения — графика скорость-время и кинематических уравнений. Каждое представление можно использовать для извлечения числовой информации о неизвестных величинах движения для любого заданного движения. Приведенные ниже примеры предоставляют полезную возможность для тех, кому требуется дополнительная практика.

Проверьте свое понимание

1. Rennata Gas движется по городу со скоростью 25,0 м/с и начинает ускоряться с постоянной скоростью -1,0 м/с 2 . В конце концов Ренната полностью останавливается.

а. Представьте ускоренное движение Реннаты, нарисовав график зависимости скорости от времени. Используйте график зависимости скорости от времени, чтобы определить это расстояние.
б. Используйте кинематические уравнения для расчета расстояния, которое проходит Ренната при замедлении.

См. график и ответ

2. Отто Эмиссионс едет на своей машине со скоростью 25,0 м/с. Отто ускоряется со скоростью 2,0 м/с 2 в течение 5 секунд. Затем Отто поддерживает постоянную скорость еще 10,0 секунд.

а. Представьте 15 секунд движения Отто Эмиссион, нарисовав график зависимости скорости от времени. Используйте график, чтобы определить расстояние, пройденное Отто за все 15 секунд.
б. Наконец, разбейте движение на два сегмента и используйте кинематические уравнения для расчета общего расстояния, пройденного за все 15 секунд.

См. график и ответ

 

3. Люк Отбелоу, человек, мастер по стрельбе из пушечного ядра, был сброшен с края обрыва с начальной восходящей скоростью +40,0 м/с. Люк ускоряется с постоянным нисходящим ускорением -10,0 м/с 2 (приблизительное значение ускорения свободного падения).

а. Нарисуйте график зависимости скорости от времени для первых 8 секунд движения Люка.
б. Используйте кинематические уравнения, чтобы определить время, необходимое Люку Отбело, чтобы вернуться на исходную высоту скалы. Укажите это время на графике.

См. график и ответ

 

4. Чак Вагон движется с постоянной скоростью 0,5 мили/мин в течение 10 минут. Затем Чак замедляется со скоростью -0,25 мили/мин 2 в течение 2 минут.

а. Нарисуйте график скорости во времени для движения Чака Вагона. Используйте график зависимости скорости от времени, чтобы определить общее расстояние, пройденное Чаком Вагоном за 12 минут движения.
б. Наконец, разбейте движение на два сегмента и используйте кинематические уравнения, чтобы определить общее расстояние, пройденное Чаком Вагоном.

См. график и ответ

 

5. Вера Сайд мчится по межштатной автомагистрали со скоростью 45,0 м/с. Вера смотрит вперед и наблюдает за аварией, в результате которой посреди дороги образовалась авария. К моменту, когда Вера бьет по тормозам, она находится в 50,0 м от пайлапа. Она замедляется со скоростью -10,0 м/с 2 .

а. Постройте график зависимости скорости от времени для движения Веры Сайд. Используйте график, чтобы определить расстояние, которое Вера преодолела бы до полной остановки (если бы она не столкнулась с нагромождением).
б. Используйте кинематические уравнения, чтобы определить расстояние, которое Вера Сайд преодолела бы до полной остановки (если бы она не столкнулась с нагромождением). Столкнется ли Вера с машинами в толпе? То есть проедет ли Вера больше 50,0 метров?

См. график и ответ

 

6. Эрл Э. Берд движется со скоростью 30,0 м/с за 10,0 секунд. Затем он ускоряется со скоростью 3,00 м/с 2 в течение 5,00 секунд.

a.Построить график зависимости скорости от времени для движения Эрла Э. Бёрда. Используйте график, чтобы определить общее пройденное расстояние.
б. Разделите движение Earl E. Bird на два временных сегмента и используйте кинематические уравнения для расчета полного смещения.

См. график и ответ

Ответы на вышеуказанные вопросы

Ответ на вопрос 1

а. График скорость-время для движения:

Пройденное расстояние можно определить путем вычисления площади между линией на графике и осью времени.

Площадь = 0,5*b*h = 0,5*(25,0 с)*(25,0 м/с)

Площадь = 313 м

б. Пройденное расстояние можно рассчитать с помощью кинематического уравнения. Решение показано здесь.

Дано:

v i = 25,0 м/с

в ф = 0,0 м/с

а = -1,0 м/с 2

Найти:

д = ??

v f 2 = v i 2 + 2*a*d

(0 м/с) 2 = (25,0 м/с) 2 + 2 * (-1,0 м/с 2 )*д

0,0 м 2 2 = 625,0 м 2 2 + (-2,0 м/с 2 )*d

0,0 м 2 2 — 625,0 м 2 2 = (-2,0 м/с 2 )*d

(-625,0 м 2 2 )/(-2,0 м/с 2 ) = d

313 м = д

Вернуться к вопросу 1

 

 

Ответ на вопрос 2

а. График скорости во времени для движения:

 

Пройденное расстояние можно определить путем вычисления площади между линией на графике и осью времени. Эта площадь будет равна площади треугольника плюс площадь прямоугольника 1 плюс площадь прямоугольника 2.

Площадь = 0,5*b tri *h tri + b rect1 *h rect1 + b rect2 *h rect2

Площадь = 0,5*(5,0 с)*(10,0 м/с) + (5,0 с)*(25,0 м/с) + (10,0 с)*(35,0 м/с)

Площадь = 25 м + 125 м + 350 м

Площадь = 500 м

б. Пройденное расстояние можно рассчитать с помощью кинематического уравнения. Решение показано здесь.

Сначала найдите d за первые 5 секунд:

Дано:

v i = 25,0 м/с

т = 5,0 с

а = 2,0 м/с 2

Найти:

д = ??

d = v i *t + 0,5*a*t 2

d = (25,0 м/с)*(5,0 с) + 0,5*(2,0 м/с 2 )*(5,0 с) 2

d = 125 м + 25,0 м

д = 150 м

Теперь найдите d за последние 10 секунд:

Дано:

v i = 35,0 м/с

т = 10,0 с

а = 0,0 м/с 2

Найти:

д = ??

(Примечание: скорость на 5-й секунде можно найти, зная, что автомобиль ускоряется с 25,0 м/с до +2,0 м/с 2 на 5 секунд. Это приводит к изменению скорости a*t = 10 м/с и, следовательно, к скорости 35,0 м/с.)

d = v i *t + 0,5*a*t 2

d = (35,0 м/с)*(10,0 с) + 0,5*(0,0 м/с 2 )*(10,0 с) 2

d = 350 м + 0 м

d =350 м

Общее расстояние за 15 секунд движения равно сумме этих двух расчетов расстояния (150 м + 350 м):

расстояние = 500 м

Вернуться к вопросу 2

 

 

Ответ на вопрос 3

а. График скорость-время для движения:

б. Время подъема и падения на исходную высоту в два раза превышает время подъема на пик. Таким образом, решение заключается в том, чтобы найти время, чтобы подняться до пика, а затем удвоить его.

Дано:

v i = 40,0 м/с

v f = 0,0 м/с

а = -10,0 м/с 2

Найти:

т до = ??

2*t вверх = ??

v f = v i + a*t вверх

0 м/с = 40 м/с + (-10 м/с2)*t вверх

(10 м/с 2 )*t до = 40 м/с

t up = (40 м/с)/(10 м/с 2 )

т до = 4,0 с

2*t до = 8,0 с

Вернуться к вопросу 3

 

 

 

Ответ на вопрос 4

а. График скорость-время для движения:

Пройденное расстояние можно определить путем вычисления площади между линией на графике и осью времени. Эта площадь будет равна площади прямоугольника плюс площадь треугольника.

Площадь = b прямоугольная *h прямоугольная + 0,5*b тройная *h тройная

Площадь = (10,0 мин)*(0,50 мили/мин) + 0,5*(2,0 мин)*(0,50 мили/мин)

Площадь = 5 миль + 0,5 мили

Площадь = 5,5 мили

б. Пройденное расстояние можно рассчитать с помощью кинематического уравнения. Решение показано здесь.

Сначала найдите d за первые 10 минут:

Дано:

v i = 0,50 миль/мин

т = 10,0 мин

а = 0,0 миль/мин 2

Найти:

д = ??

d = v i *t + 0,5*a*t 2

d = (0,50 миль/мин)*(10,0 мин) + 0,5*(0,0 миль/мин 2 )*(10,0 мин) 2

d = 5,0 миль + 0 миль

d = 5,0 миль

Теперь найдите d за последние 2 минуты:

Дано:

v i = 0,50 миль/мин

т = 2,0 мин

а = -0,25 миль/мин 2

Найти:

д = ??

d = v i *t + 0,5*a*t 2

d = (0,50 миль/мин)*(2,0 мин) + 0,5*(-0,25 м/с 2 )*(2,0 мин) 2

d = 1,0 мили + (-0,5 мили)

d = 0,5 мили

Общее расстояние за 12 минут движения равно сумме этих двух расчетов расстояния (5,0 миль + 0,5 мили):

расстояние = 5,5 мили

Вернуться к вопросу 4

 

 

Ответ на вопрос 5

а. График скорость-время для движения:

Пройденное расстояние можно определить путем вычисления площади между линией на графике и осью времени.

Площадь = 0,5*b*h = 0,5*(4,5 с)*(45,0 м/с)

Площадь = 101 м

 

б.

Дано:

v i = 45,0 м/с

v f = 0,0 м/с

а = -10,0 м/с 2

Найти:

д = ??

v f 2 = v i 2 + 2*a*d

(0 м/с) 2 = (45,0 м/с) 2 + 2 * (-10,0 м/с 2 )*d

0,0 м 2 2 = 2025,0 м 2 2 + (-20,0 м/с 2 )*d

0,0 м 2 2 — 2025,0 м 2 2 = (-20,0 м/с 2 )*d

(-2025,0 м 2 2 )/(-20,0 м/с 2 ) =d

101 м =d

Так как место аварии находится менее чем в 101 м от Веры, она действительно врежется в нагромождение перед полной остановкой (если не отклонится в сторону).

Вернуться к вопросу 5

 

 

 

Ответ на вопрос 6

а. График скорость-время для движения:

Пройденное расстояние можно определить путем вычисления площади между линией на графике и осью времени. Эта площадь будет равна площади треугольника плюс площадь прямоугольника 1 плюс площадь прямоугольника 2.

Площадь = 0,5*b tri *h tri + b 1 1 + б 2 2

Площадь = 0,5*(5,0 с)*(15,0 м/с) + (10,0 с)*(30,0 м/с) + (5,0 с)*(30,0 м/с)

Площадь = 37,5 м + 300 м + 150 м

Площадь = 488 м

 

б. Пройденное расстояние можно рассчитать с помощью кинематического уравнения. Решение показано здесь.

Сначала найдите d за первые 10 секунд:

Дано:

v i = 30,0 м/с

т = 10,0 с

а = 0,0 м/с 2

Найти:

д = ??

d = v i *t + 0,5*a*t 2

d = (30,0 м/с)*(10,0 с) + 0,5*(0,0 м/с 2 )*(10,0 с) 2

d = 300 м + 0 м

d =300 м

Теперь найдите d за последние 5 секунд:

Дано:

v i = 30,0 м/с

т = 5,0 с

а = 3,0 м/с 2

Найти:

д = ??

d = v i *t + 0,5*a*t 2

d = (30,0 м/с)*(5,0 с) + 0,5*(3,0 м/с 2 )*(5,0 с) 2

d = 150 м + 37,5 м

д = 187,5 м

Общее расстояние за 15 секунд движения равно сумме этих двух расчетов расстояния (300 м + 187,5 м):

расстояние = 488 м

Вернуться к вопросу 6

 

Кинематические уравнения

Целью этого первого раздела Класса физики было исследование разнообразных средств, с помощью которых можно описать движение объектов. Разнообразие репрезентаций, которые мы исследовали, включает словесные репрезентации, графические репрезентации, числовые репрезентации и графические репрезентации (графики положение-время и графики скорость-время). В Уроке 6 мы исследуем использование уравнений для описания и представления движения объектов. Эти уравнения известны как кинематические уравнения.

Существует множество величин, связанных с движением объектов: перемещение (и расстояние), скорость (и скорость), ускорение и время. Знание каждой из этих величин дает описательную информацию о движении объекта. Например, если известно, что автомобиль движется с постоянной скоростью 22,0 м/с, на север в течение 12,0 секунд при смещении на север на 264 метра, то движение автомобиля полностью описано. И если известно, что вторая машина разгоняется из положения покоя с ускорением в восточном направлении 3,0 м/с 2 за время 8,0 секунд, обеспечивая конечную скорость 24 м/с, восток и смещение в восточном направлении 96 метров, то движение этого автомобиля полностью описано. Эти два утверждения обеспечивают полное описание движения объекта. Однако такая полнота не всегда известна. Часто бывает известно лишь несколько параметров движения объекта, а остальные неизвестны. Например, приближаясь к светофору, вы можете знать, что скорость вашего автомобиля составляет 22 м/с на восток, а ускорение заноса составляет 8,0 м/с.0015 2 , Запад. Однако вы не знаете, какое смещение испытает ваша машина, если вы нажмете на тормоза и занесете до остановки; и вы не знаете время, необходимое для остановки. В таком случае неизвестные параметры могут быть определены с использованием принципов физики и математических уравнений (кинематических уравнений).

БОЛЬШАЯ 4

Кинематические уравнения представляют собой набор из четырех уравнений, которые можно использовать для прогнозирования неизвестной информации о движении объекта, если известна другая информация. Уравнения можно использовать для любого движения, которое можно описать либо как движение с постоянной скоростью (ускорение 0 м/с/с), либо как движение с постоянным ускорением. Они никогда не могут быть использованы в течение какого-либо периода времени, в течение которого изменяется ускорение. Каждое из кинематических уравнений включает четыре переменные. Если известны значения трех из четырех переменных, то можно вычислить значение четвертой переменной. Таким образом, кинематические уравнения обеспечивают полезные средства прогнозирования информации о движении объекта, если известна другая информация. Например, если известно значение ускорения, а также значения начальной и конечной скорости буксующего автомобиля, то перемещение автомобиля и время можно предсказать с помощью кинематических уравнений. Урок 6 этого раздела будет посвящен использованию кинематических уравнений для предсказания числовых значений неизвестных величин движения объекта.

Четыре кинематических уравнения, описывающие движение объекта:

В приведенных выше уравнениях используются различные символы. Каждый символ имеет свое особое значение. Символ d обозначает смещение объекта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *