Электромотор для авто: Электродвигатели для электромобилей — купить на сайте IskraMotor

Содержание

Двигатель электромобиля — принцип работы, устройство, виды

Электродвигатель (тяговый электромотор, двигатель на электротяге) – мотор, который устанавливается на электротранспорт и гибридные автомобили. У электромобилей электродвигатель – единственный двигатель. У гибридных автомобилей электродвигатель работает в тандеме с двигателем внутреннего сгорания. В зависимости от выбранного режима работы и схемы автомобиля включается электромотор, бензиновый двигатель или два двигателя одновременно.

По планам многих автоконцернов – именно за тяговым двигателем для электромобиля – будущее. Так известно, что в плане развития известного гиганта Bentley Motors значится, что к 2030-му году компания полностью трансформируется в производителя электроавтомобилей. На электродвигатели ставки также делают такие известные на весь мир компании, как Nissan, Volvo, Aston Martin. 

Тенденции таковы, что в массовом производстве сейчас больше представлены легковые электромобили и городской электротранспорт (согласно планам, в ряде таких стран как, к примеру, Франция и Норвегия в 2025-2030-м гг. автобусы в городах будут полностью заменены на электротранспорт).

Но чувствуется интерес и к установке электромоторов на грузовой транспорт. Особенно электродвигатели интересны производителям городских развозных фургонов, терминальных тягачей и коммунальных грузовиков.

На весь мир уже хорошо известен седельный тягач капотного типа Tesla Semi, в коммунальном хозяйстве США активно не первый год используют мусоровозы PETERBILT на электротяге, в Евросоюзе возрастает интерес к седельному тягачу с электродвигателем Emoss Mobile Systems B.V. и Renault Trucks –развозному автомобилю для продуктов.

На постсоветском пространстве свой коммерческий электротранспорт пока только начинает появляться, но уже активно говорят про грузовик МАЗ-4381Е0 (на грузовике установлен асинхронный тяговый электродвигатель мощностью 70 кВт (95 л.с.), ориентированный на транспортировку грузов в черте города, и электрогрузовик Moskva опытно-конструкторского бюро Drive Electro (главное назначение — доставка товаров в магазины). Не за горами время, когда этот коммерческий транспорт с электромоторами будет активно востребован автопарками, логистическими центрами, предприятиями.

Также, безусловно, давно, как данность мы принимаем, что на электродвигателе работают трамваи, троллейбусы, погрузчики на складах и локомотивы. Трёхфазный асинхронный двигатель помогает двигаться на давно полюбившихся поездах «Ласточка» и «Сапсан».

Принцип работы

Принцип работы двигателя электромобиля основан на преобразовании электроэнергии в механическую энергию вращения. Главные участники преобразования энергии – статор и ротор.

Как работает традиционный электромотор?

  1. Магнитное поле статора действует на обмотку ротора.
  2. Возникает вращающий момент.
  3. Ротор начинает двигаться.

Наглядная схема двигателя электромобиля в системе электропривода представлена ниже:

Важная особенность классического электрокара – отсутствие дифференциала, коробки передач, передаточных устройств с шестеренками. Энергия от электромотора поступает прямо на колеса.

Без коробки передач – и большинство «гибридов» с электродвигателем и ДВС. Исключение – «гибриды» с параллельной схемой передачи на колёса крутящего момента. К ней мы ещё вернёмся в этой статье в разделе, посвящённом гибридным автомобилям.

Принцип работы любого электродвигателя базируется на процессах взаимного притяжения и отталкивания полюсов магнитов на роторе и статоре. Движение осуществляется под действием самого магнитного поля и инерции.

Устройство

Как устроен двигатель электромобиля?

При описании принципа работы электродвигателя, уже было упомянуто, что главные компоненты двигателя электромобиля– ротор и статор.

  1. Ротор – это вращающийся компонент двигателя.
  2. Статор находится в неподвижном состоянии. Он ответственен за создание неподвижного магнитного поля.

Ротор

Классический ротор автомобиля состоит из сердечника, обмотки и вала. У некоторых электродвигателей в состав ротора также входит коллектор.

  • Сердечник – это металлический стержень, на периферии которого располагается обмотка. Непосредственно через сердечник происходит замыкание магнитной цепи электродвигателя. Сердечник изготавливается из стальных пластин круглой формы. По структуре похож на слоёный пирог. При производстве сердечников используют изолированные листы стали с присадками кремния. В этом случае обеспечены увеличение КПД электродвигателя, наименьшие удельные потери в металле на единицу массы, снижение величины размагничивающих вихревых токов Фуко, которые возникают из-за перемагничивания сердечника. На поверхности сердечника есть продольные пазы. Через них прокладывается обмотка.
  • Вал – металлический стержень, который непосредственно передаёт вращающий момент. Также изготавливается из электротехнической стали. Служит основой для насаживания сердечника. На концах вала есть резьба, выемки под шестерёнки, подшипники качения, шкивы.
  • Коллектор – блок, крепящийся на валу. Представляет собой систему медных пластин. Изолирован от вала. Служит выпрямителем переменного тока, переключателем-автоматом направления тока (в зависимости от вида электродвигателя).

Статор (индуктор)

Статор состоит из станины, сердечника и обмотки:

  • Станина статора – корпус статора. Как правило, корпус бывает алюминиевым или чугунным. Алюминиевые станины популярны у электродвигателей легковых авто, чугунные – у спецтехники, которая вынуждена работать в условиях высокой вибрации. Станина служит базой крепления основных и добавочных полюсов.
  • Сердечник статора – цилиндр из профилированных стальных листов. Фиксируется винтами внутри станины. Снабжён пазами для обмотки.
  • Обмотка. Создаёт магнитный поток. При пересечении проводников ротора наводит в них электродвижущую силу.

Виды

Электродвигатели классифицируют по типу питания привода, конструкции щеточно-коллекторного узла, количеству фаз для запитывания:

  • По типу питания привода. Устройства делятся на моторы переменного и постоянного тока. Двигатели постоянного тока способны обеспечить более точную и плавную регулировку оборотов, высокий КПД. Двигатели переменного тока выручают, когда важна высокая перегрузочная способность. Это удачный вариант для подъёмно-транспортных машин. Впрочем, существуют и универсальные моторы, которые функционируют от переменного и постоянного тока.
  • По конструкции щеточно-коллекторного узла. Выпускаются бесколлекторные и коллекторные моторы. Бесколлекторный мотор работает за счёт движения ротора с постоянным магнитом. У конструкции нет щеточно-коллекторного узла. Решение обеспечивает достойный крутящий момент, широкий диапазон скоростей и высокий КПД. Важные преимущества бесколлекторного мотора – надёжность, способность к самосинхронизации, возможность подпитываться при переменном напряжении. Ресурс бесколлекторного мотора ограничен исключительно ресурсом подшипников. У коллекторных моторов присутствует щелочно-коллекторный узел. Удобство решения связано с тем, что он может использоваться и в качестве переключателя тока в обмотках, и как извещатель положения ротора, нет необходимости в контролле. Проблема коллекторных моделей – в том, что они зависимы от постоянных магнитов, которые, как известно, со временем, к огромному сожалению, теряют свои свойства.
  • По количеству фаз для запитывания. В зависимости от того, как запитывается обмотка, электродвигатели бывают однофазными и трёхфазными. В автомобилестроении широкое распространение получили трёхфазные решения, это связано с рядом технических характеристик (мощность, перегрузочная способность, частота вращения на холостом ходу).

Обратите внимание! Работать трёхфазные моторы могут синхронно и асинхронно, а в качестве ротора используются как короткозамкнутые, так и фазные модели. Самый популярный вариант – трехфазные асинхронные моторы с короткозамкнутым ротором. Они стоят на большинстве современных электрокаров.

Асинхронные и синхронные двигатели

Синхронные моторы – двигатели переменного тока, у которых частота вращения ротора идентична частоте вращения магнитного поля (измерение производится в воздушном зазоре). В автомобилестроении синхронные моторы встретить можно нечасто (хотя в мире техники – это, в целом, очень популярное решение – особенно в климатотехнике, насосных системах).

Но есть производители авто, которые при производстве электрокаров предпочитают устанавливать на свои машины именно синхронные двигатели. Яркий пример – концерн Renault. Синхронными двигателями на электромагнитах он оснастил электрокар Renault Zoe. На электромагниты подаётся постоянный ток. Полярность магнитов ротора стабильна. Полярность магнитов статора при этом изменяется и обеспечивает бесперебойное вращение.

Преимущество синхронных двигателей на электромагнитах у авто – максимальная оптимизация рекуперации энергии торможения. И главный «конёк» авто с таким типом электродвигателя – полная безопасность при буксировке.

Гораздо более популярный вариант – асинхронные двигатели. Это двигатели переменного тока, у которых потенциал напряжения – магнитного поля не совпадает с частотой вращения ротора. Типичным 3-фазным асинхронным двигателем оснащены, например, хорошо известные автомобили Tesla S и Tesla Х.

Иногда асинхронные моторы называют индукционными, так как в роторе в соответствие с законом Ленца у них индуцируется электромагнитная сила.

Двигатель-колесо

Обособленно среди электромоторов стоит двигатель-колесо. Особенность двигателя- колеса – ориентир крутящего момента и силы напряжения на конкретное колесо.

Такие решения можно встретить в плагин-гибридных автомобилях («гибридах» с параллельной схемой, при описании устройства гибридных авто ниже по тексту мы остановимся на них подробнее). Работает двигатель-колесо в паре с ДВС.

У первых плагин-гибридных автомобилей с двигателем-колесом агрегат был монтирован в ступицу колеса, а работа осуществлялась исключительно в паре с внутренним зубчатым редуктором.

Некоторые же современные модели моторов, монтируемые внутри колёс, вполне могут работать без зубчатого редуктора. Это увеличивает управляемость, позволяет избежать увеличения удельного веса шасси, уменьшить риски, повышает КПД.

Преимущества и недостатки электродвигателей

Преимуществ у электродвигателей существенно больше, нежели недостатков. Более того, за счёт усовершенствования и конструктивных особенностей самих электроприводов, и инфраструктуры, связанной с зарядкой, многие вещи, которые вчера ещё казались критичными, сегодня теряют свою актуальность.

Преимущества

  • Не требуется «раскачка». Крутящий момент достигает максимума непосредственно при включении. Именно по этой причине электрический двигатель электромобиля не требует наличия стартеров и сцеплений – неотъемлемых спутников ДВС.
  • Удобство. Для включения заднего хода (то есть коррекции со стороны вращения мотора) достаточно поменять полярность, сложная коробка передач не требуется.
  • Высокий КПД. У машин с электродвигателями он достигает 95 %.
  • Независимость. На любой отметке скорости достигается максимальный показатель крутящего момента.
  • У мотора – малый вес. Производители могут себе легко позволить создавать компактные автомобили.
  • Есть все возможности для рекуперации энергии торможения. Если у авто с ДВС кинетическая энергия просто уходит в колодки (и стирает их), то у электромобиля в режиме рекуперации мотор может функционировать как генератор. В режиме генерации электроэнергия просто трансформируется в другую форму и быстро накапливается в АКБ. Особенно решение эффективно для транспортных средств с длинным тормозным путем. На объём генерируемой и накопленной энергии существенно влияет маршрут (рельеф, в частности наличие холмистых участков на дороге и уклон дороги).
  • Снижение расходов на эксплуатацию машины. Зарядку можно производить от электросети. Это существенно дешевле, нежели использование дизеля, бензина. Выгода очевидна даже по сравнению с бензиновыми авто эконом-класса.
  • Малый уровень шума.
  • В большинстве случаев для мотора не требуется принудительное охлаждение.
  • Экологичность. Использование транспорта с электродвигателем снижает количество выхлопных газов в воздухе.

Недостатки

Долгое время считалось, что самый большой минус использования электродвигателя – его зависимость от аккумуляторов, которые быстро выходят из строя. Теперь это неактуально. Современные батареи электрокаров, представленных в массовом выпуске, гарантируют пробег автомобиля 150-200 тыс. км. Потерял актуальность и тот фактор, что машины с электродвигателем существенно уступают бензиновым по мощности. Электротяга современных электромоторов уже не уступает ДВС.

Поэтому недостатки электродвигателей сейчас правильно свести не к недостаткам конструкции, а к плохо развитой инфраструктуре для того, чтобы подзаряжать электромобили. Если в США, Скандинавии подзарядить электрокар легко, то до недавнего момента даже в Западной и Центральной Европе с инфраструктурой для подзарядки таких машин были проблемы.

В России, Беларуси, Украине, Казахстане, пока, увы, с инфраструктурой ситуация ещё хуже. Хотя, например, в России число заправок для электрокаров с 2018 по 2020 год возросло в 3 раза, но полотно покрытия площадками для зарядки очень неоднородное. В Москве – более плотное, в регионах – слабое. Даже разрыв с такими городами-гигантами как Санкт-Петербург и Челябинск — колоссальный.

Устройство электромобиля

Рассматривая электродвигатель, важно остановиться на устройстве электромобиля в целом, изучение электродвигателя не самого по себе, а как части системы электропривода, где электродвигатель – один из его базовых компонентов, его «сердце». Но «организм», функционирует только тогда, когда в порядке все другие «органы» – части электропривода:

  • Аккумуляторная батарея.
  • Бортовое зарядное устройство. Его функция – обеспечение возможности заряжать аккумуляторную батарею от бытовой электрической сети.
  • Трансмиссия. Распространены трансмиссия с одноступенчатым зубчатым редуктором (чаще всего встречающийся и наиболее простой вариант) и бесступенчатая трансмиссия с гидротрансформатором (для старта с места), плавно изменяющие отношение скоростей вращения и вращающих моментов мотора и ведущих колес транспортного средства во всём рабочем диапазоне скоростей и тяговых усилий.
  • Инвертор. Назначение инвертора – трансформирование высокого напряжения постоянного тока аккумулятора в трехфазное напряжение переменного тока.
  • Преобразователь постоянного тока. Функция – зарядка дополнительной батареи, которая используется для системы освещения, кондиционирования, аудиосистемы.
  • Электронная система управления (блок управления). Отвечает за управление функциями, связанными с энергосбережением, безопасностью комфортом. В её «подчинении» – оценка заряда АКБ, оптимизация режимов движения, регулирование тяги, контроль за использованной энергией и за напряжением, управлением ускорением и рекуперативным торможением.

Аккумуляторная батарея

Аккумуляторная батарея (аккумулятор) – один из наиболее дорогих компонентов системы. По своей значимости играет такую же роль, как бензобак для ДВС. Электромобиль движется за счёт электричества, полученного от электросети во время зарядки и хранящегося в АКБ.

При этом важно помнить, что у большинства электромобилей устанавливаются одновременно два аккумулятора: один тяговой – он питает именно мотор и стартерный (как и в машинах с ДВС, он помогает системе освещения, системе подогрева). Эти аккумуляторы разные не только по назначению, но и техническим характеристикам.
Тяговый аккумулятор электрического двигателя электромобиля предназначен для питания мотора, запуска двигателя. У него нет высокого пускового тока, но он заточен на длительную работу, выдерживает большое количество циклов заряда-разряда.

Типичная тяговая АКБ – моноблочная секционная конструкция. Тяговая АКБ состоит из толстых электронных пластин – пористых сепараторов и электролитного вещества.
Самые распространенные аккумуляторы – литий-ионные. У них – наиболее высокая энергетическая плотность, не требуется обслуживание, достаточно низкий саморазряд.

Устройство и особенности гибридных систем

Свои особенности – у гибридных систем. В гибридных системах электродвигатель может рассматриваться и как «партнёр» ДВС, и как допэлемент, помогающий добиться экономии топлива и при этом повышения мощности.

Устройство «гибрида» отличается в зависимости от реализованной схемы передачи на колёса крутящего момента.

  • Параллельная. Аккумуляторы передают энергию электромотору, бак – топливо для ДВС. Оба агрегата равноправны и способны создать условия для перемещения авто. Но работает такая схема только при наличии коробки передач. Параллельная схема успешно реализована у автомобиля Honda Civic. Нередко гибриды с параллельной схемой выделяют в отдельную группу и называют плагин-гибридными.
  • Последовательная. Любое действие начинается с включения ДВС. Он же отвечает за последующие действия: поворот генератора для запуска электромотора, зарядку аккумуляторов.
  • Последовательно-параллельная. Через планетарный редуктор соединены ДВС, электродвигатель и генератор. В зависимости от условий движения может использоваться тяга электродвигателя или ДВС. Режим выбирается программно системой управления транспортного средства. Среди хорошо известных последовательно-параллельных «гибридов» – Toyota Prius, Lexus-RX 400h.

Классический гибридный автомобиль использует интегрированный в трансмиссию электрический мотор-генератор.

При этом для получения электрической тяги у гибридных систем задействованы четыре базовых компонента:

  • Мотор-генератор. Является обратимой силовой установкой. Может работать в двух режимах: непосредственно тягового мотора и генератора для зарядки высоковольтной аккумуляторной батареи. При работе в режиме мотора возможно создание крутящего момента и мощности, которых хватит для старта и движения автомобиля с выключенным ДВС, при работе устройства в режиме генератора продуцируется высоковольтная электроэнергия.
  • Высоковольтные силовые кабели. Изолированные электрические кабели большого сечения. Важны для переноса энергии между компонентами высоковольтных электроцепей.
  • Высоковольтные аккумуляторные батареи. Включенные в последовательную цепь аккумуляторные элементы. Позволяют накопить в батарее большой объём электроэнергии.
  • Высоковольтный силовой модуль управления для управления потоком электроэнергии для движения транспортного средства на электрической тяге.

Гибридные авто открывают новые эксплуатационные возможности, с одной стороны можно быть максимально экологичным, радоваться комфортной езде и сэкономить на топливе, а с другой стороны, при разряде аккумулятора владелец авто не попадёт впросак, если невозможно подзарядить мотор: в работу вступит ДВС.

Перспективы применения электродвигателей в автомобилях

Перспективы применения электродвигателей в автомобилях напрямую связаны с тем, насколько активно будет развиваться инфраструктура. Там, где она не обеспечена, использование электрокаров действительно ограничено. Ведь без подзарядки у многих авто – малая дальность пробега.

Впрочем, даже последняя проблема активно решаемая. Немецкие и японские разработчики (компании DBM Energy, Lekker Energie, Japan Electric Vehicle Club) сумели доказать миру: потенциал у электродвигателей, аккумуляторов без подзарядки может достигать 500 -1000 тысяч километров пробега. Правда, пока что 1 000 тысяч км пробега без подзарядки возможны только в теории, а 500-600 уже на практике.

На данный момент доступность такого транспорта – на уровне инженерно-конструкторской работы, экспериментальных выпусков, но есть перспективы что их подхватят автогиганты, и не за горизонтом – серийное производство.

Перспективы применения электродвигателей в автомобилях очень тесно связаны и с политикой отдельных государств. Например, в Норвегии обладатели электромобилей освобождены от уплаты ежегодного налога на транспорт, пользования платными дорогами, паромными переправами и даже большинством парковок. С учётом того, что налоги и тарифы в Скандинавии одни из самых высоких, мотивация приобрести именно авто с электродвигателем, а не ДВС – очень высокая.

Обратите внимание, что на базе LCMS ELECTUDE есть специальный раздел “Электрический привод”, в нём подробно разбираются электродвигатели, виды электропривода, системы зарядки, особенности обслуживания транспорта с электромотором. Кроме комплексных теоретических знаний в обучающих модулях приводятся многочисленные практические примеры.

Электротяга вместо ДВС? Для каких машин это имеет смысл – DW – 30.06.2022

Олдтаймер марки Framo станет электрокаром после тюнинга в ЭрфуртеФото: Gero Rueter/DW

Экономика и бизнесГермания

Геро Рютер | Михаил Бушуев

30 июня 2022 г.

Продажи электроавтомобилей в мире удвоились за год, но могли бы и больше — тормозит высокая цена. А что если поменять старый бензиновый или дизельный двигатель на электрический?

https://p. dw.com/p/4DD0U

Реклама

«Переоборудование дизельных автобусов в электрические не только с технической точки зрения завораживающее дело, но и экономически — это выгодная операция для всех сторон», — уверен Ханс-Георг Херб (Hans-Georg Herb), глава компании Elerra из Эрфурта (это на востоке Германии). Компания Херба специализируется на переоснащении традиционного автотранспорта электрическими двигателями. Вот сейчас очередь в его мастерской дошла до рейсового автобуса, который проездил на дизельном моторе 10 лет. Старый двигатель уже сняли, осталось встроить новый: заднюю ось и два электромотора — в ступицах колес. «Выглядит просто, но внутри — хайтек», — объясняет Херб.

Новая конструкция занимает меньше места, чем старая, так что для электрических аккумуляторов хватает места. «Сюда можно встроить восемь батарей с энергоемкостью в 200 кВт/час. Такому автобусу этого хватит примерно на 250 километров пути», — считает Херб.          

Электробус на базе подержанного автобуса — выгодно

В зависимости от размера аккумулятора переоснащение обходится от 300 до 340 тысяч евро. Дорого, если не учитывать, что новый электроавтобус стоит сегодня вдвое дороже. Херб рассчитывает на то, что получит новые заказы на переоснащение рейсовых автобусов. «В этом году мы еще успеем переоснастить три автобуса», — говорит он. Но план на следующий год — переоснастить 60-70 автобусов электротягой, в сотрудничестве с другими мастерскими — довести это число до 200-300.

Задняя ось электробуса со встроенными в ступицу колеса электромоторами Фото: Gero Rueter/DW

Спрос на электроавтобусы для городского транспорта растет благодаря новым правилам Евросоюза: больше половины новых машин должны быть оснащены электрическими моторами. Только в Германии закупается более 3000 штук ежегодно и более 15 000 — в целом в ЕС. Промышленные производители столько предоставить пока не могут. В то же время для транспортных предприятий рейсовые электроавтобусы — это выгодная альтернатива традиционным, так как электробусы меньше нуждаются в ремонте, и в сравнении с дизельными обходятся дешевле в эксплуатации — в зависимости от конфигурации до 60 процентов.

Такое переоснащение станет международным трендом, ожидает Херб: цены на аккумуляторные батареи падают, массовое производство позволяет снизить и цены на компоненты к электрическим моторам, встроенным в ступицу колеса. Вскоре стоимость переоснащения можно будет снизить практически вполовину. «Я могу себе представить, что практически половина работающих сегодня автобусов будет переоснащена. Если мы хотим добиться декарбонизации, то без такого переоснащения нам этой цели не добиться», — считает глава Elerra.

Легковушки? «Только в качестве хобби»

В принципе, любой бензиновый или дизельный автомобиль можно сделать электрокаром: снять мотор внутреннего сгорания, поставить электромотор и аккумуляторные батареи, а также поменять электронику. Тот же Ханс-Георг Херб впервые попробовал такое переоснащение в 2014 году на знаменитом Porsche 911. И только потом принялся за олдтаймеры, грузовой и пассажирский транспорт.

«Ягуар» 1993 года получит электротягу. «Это скорее хобби», — говорит автомеханик ХербФото: Gero Rueter/DW

Но цена переоснащения олдтаймера под силу не каждому: около 60 тысяч евро обойдется такая работу владельцу лимузина «Ягуар» 1993 года выпуска. «Клиент попросил электризовать этот автомобиль. Я использовал в этом случае старые модули компании Tesla», — объясняет свою работу Херб. Для понимания того, как складывается такой счет, он объясняет: мотор и аккумулятор обходятся для олдтаймеров в сумму не менее 10 тысяч евро, само переоснащение занимает более 100 часов работы автомеханика, это самая большая статья расходов.

Чисто экономически такое переоснащение смысла не имеет, говорит Херб. «Подобные автомобили, как правило, используются редко, так что расходы на обслуживание роли не играют. Такое переоснащение — это скорее хобби», — считает автомеханик. Тем не менее запросы от частных клиентов не прекращают поступать к нему, и он, по собственным словам, устает повторять одно и то же. «Ну вот, например, звонит человек и спрашивает, можно ли переоснастить VW Polo. Я отвечаю: «Если ты купишь VW E-Up (мини-электрокар. — Ред.), то это окажется и дешевле, и, возможно, лучше, чем наш итоговый результат. Нет смысла переоснащать VW Polo, я это вынужден объяснять очень многим людям», — резюмировал Херб.

Коммерческий транспорт — еще одна ниша

Помимо электробуса, в мастерской Херба стоят три новых грузовых автомобиля — небольшой грузовик Fuso производства Daimler и Mitsubishi. Электрических версий этих грузовых машин производители пока не предлагают, так что их переоснащают тоже в полноприводные электрогрузовики, с новым софтом для автомобильной электроники, которая должна обеспечить эффективную работу нового двигателя и аккумуляторов. «Этот транспорт хорошо годится для работы в зимних условиях, поэтому мы сделаем небольшую серию таких автомобилей для городских условий», — объясняет задачи Херб.

Ханс-Георг Херб и его мастерская — далеко не единственная в ЕС, которая предлагает такое переоснащение. Их клиенты — это небольшие европейские муниципалитеты, которые в стремлении добиться снижения вредных выбросов ищут варианты отказа от автомобилей с двигателями внутреннего сгорания, а также службы доставки, которые стремятся переоборудовать свой транспорт.

Смотрите также:

Что говорят поклонники и критики Илона Маска

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

Написать в редакцию

Реклама

Пропустить раздел Еще по теме

Еще по теме

Пропустить раздел Топ-тема

1 стр. из 3

Пропустить раздел Другие публикации DW

На главную страницу

EV Motors: объяснение

Из апрельского выпуска журнала Car and Driver за 2022 год.

Любители автомобилей так долго были погружены в язык двигателей внутреннего сгорания, что неумолимый переход на электрификацию требует настройки нашей базы знаний. Многие из нас знакомы с ритмом всасывания-сжимания-выдоха четырехтактного двигателя, который приводит в действие большинство сегодняшних водителей, в то время как снегоходы и любители подвесных моторов среди нас, вероятно, могут объяснить внутреннюю работу двухтактного двигателя. Некоторые ботаники могут даже иметь представление о эпитрохоидальных махинациях роторного двигателя Ванкеля, но опыт обычного редуктора с электродвигателями может начаться и закончиться с последним отказом стартера.

Все типы двигателей электромобилей состоят из двух основных частей. Статор — это стационарная внешняя оболочка двигателя, корпус которой крепится к шасси наподобие блока цилиндров. Ротор представляет собой единственный вращающийся элемент и аналогичен коленчатому валу в том, что он передает крутящий момент через трансмиссию на дифференциал.

В большинстве электромобилей используется блок с прямым приводом (с одним передаточным числом), который снижает скорость вращения между двигателем и колесами. Как и двигатели внутреннего сгорания, электродвигатели наиболее эффективны при низких оборотах и ​​более высоких нагрузках. В то время как электромобиль может иметь приемлемый запас хода на одной передаче, более тяжелые пикапы и внедорожники, предназначенные для буксировки прицепов, увеличат запас хода благодаря многоступенчатой ​​трансмиссии на скорости шоссе. Сегодня только Audi e-tron GT и Porsche Taycan используют двухступенчатую коробку передач. Многоступенчатые потери и затраты на разработку являются причинами редкости электромобилей с более чем одной передачей, но мы прогнозируем, что это изменится.

Унификация электродвигателей EV

Все три основных типа электродвигателей используют трехфазный переменный ток для создания вращающегося магнитного поля (RMF), частота и мощность которого контролируются силовой электроникой, реагирующей на нажатие педали акселератора. Статоры содержат многочисленные параллельные пазы, заполненные соединенными между собой петлями медных обмоток. Это могут быть громоздкие пучки медной проволоки круглого сечения или аккуратные медные вставки в виде шпилек квадратного сечения, увеличивающие как плотность заполнения, так и прямой контакт между жилами внутри канавок. Более плотные витки улучшают способность к крутящему моменту, а более аккуратное переплетение на концах приводит к меньшему объему и меньшему общему корпусу.

Аккумуляторы — это устройства постоянного тока, поэтому силовая электроника электромобиля включает инвертор постоянного тока в переменный, который обеспечивает статор переменным током, необходимым для создания важнейшей переменной RMF. Но стоит отметить, что эти электродвигатели также являются генераторами, а это означает, что колеса будут вращать ротор в статоре в обратном направлении, чтобы индуцировать RMF в другом направлении, которое возвращает мощность обратно через преобразователь переменного тока в постоянный, чтобы отправить мощность в батарея. Этот процесс, известный как рекуперативное торможение, создает сопротивление, замедляющее автомобиль. Регенерация не только играет центральную роль в расширении запаса хода электромобиля, это в значительной степени целый шарик воска, когда речь идет о высокоэффективных гибридах, потому что большое количество регенерации улучшает показатели экономии топлива EPA. Но в реальном мире рекуперация менее эффективна, чем выбег, что позволяет избежать потерь каждый раз, когда энергия проходит через двигатель и преобразователь при сборе кинетической энергии.

Три типа электродвигателей

Типы двигателей можно разделить по фундаментальным различиям роторов, которые представляют собой совершенно разные способы преобразования RMF статора в фактическое вращательное движение. Эти различия на самом деле достаточно разительны, чтобы отдать должное нашей первоначальной аналогии с четырьмя циклами, двумя циклами и Ванкеля. В асинхронной категории у нас есть асинхронные двигатели, в то время как синхронная группа включает двигатели с постоянными магнитами и двигатели с токовым возбуждением.

Асинхронные двигатели существуют с 19 века. Здесь ротор содержит продольные пластины или стержни из проводящего материала, чаще всего из меди, но иногда из алюминия. RMF статора индуцирует ток в этих пластинах, который, в свою очередь, создает электромагнитное поле (ЭДС), которое начинает вращаться внутри RMF статора. Асинхронные двигатели известны как асинхронные двигатели, потому что ЭДС индукции и связанный с ней вращающий момент могут существовать только тогда, когда скорость ротора отстает от RMF. Такие двигатели распространены, потому что им не нужны редкоземельные магниты и они относительно дешевы в производстве, но их сложнее охлаждать при длительных высоких нагрузках и они по своей природе менее эффективны на низких скоростях.

Как следует из названия, роторы двигателей с постоянными магнитами обладают собственным магнетизмом. Для создания магнитного поля ротора не требуется энергии, что делает их гораздо более эффективными на низкой скорости. Такие роторы также вращаются синхронно с RMF статора, что делает их синхронными. А вот с простой обмоткой ротора магнитами поверхностного монтажа возникают проблемы. Например, для этого требуются более крупные магниты, а удерживать ротор на высокой скорости становится все труднее по мере того, как все становится тяжелее. Но более серьезной проблемой является так называемая «обратная ЭДС» на высоких скоростях, при которой обратное электромагнитное магнитное поле добавляет сопротивление, которое ограничивает максимальную мощность и создает избыточное тепло, которое может повредить магниты.

Чтобы избежать этого, большинство электродвигателей с постоянными магнитами оснащены внутренними постоянными магнитами (IPM), которые попарно вставляются в продольные V-образные пазы, расположенные в виде нескольких лепестков прямо под поверхностью железного сердечника ротора. Прорези обеспечивают безопасность IPM на высокой скорости, но преднамеренно сформированные области между магнитами создают противодействующий крутящий момент. Магниты либо притягиваются, либо отталкиваются от других магнитов, но обычное сопротивление, сила, которая прикрепляет магнит к ящику с инструментами, притягивает лепестки железного ротора к RMF. IPM выполняют работу на более низких скоростях, а реактивный крутящий момент берет верх на высоких скоростях. Чтобы вы не думали, что это новинка, Prius использует их.

Окончательный тип двигателя не существовал в электромобилях до недавнего времени, потому что общепринятое мнение гласило, что бесколлекторные двигатели, которые описаны выше, были единственным жизнеспособным вариантом для электромобиля. BMW недавно изменила эту тенденцию, установив щеточные синхронные двигатели переменного тока с токовым возбуждением на новые модели i4 и iX. Ротор этого типа взаимодействует с RMF статора точно так же, как ротор с постоянными магнитами, но в роторе отсутствуют постоянные магниты. Вместо этого он имеет шесть широких медных лепестков, питающихся от батареи постоянного тока для создания необходимой ЭДС. Для этого требуются контактные кольца и подпружиненные щетки на валу ротора, что заставило других отказаться от этого подхода из-за опасений по поводу износа щеток и связанной с ним пыли. Не будет ли здесь проблемой износ щеток? Это еще предстоит выяснить, но мы в этом сомневаемся. Массив щеток изолирован в изолированном отсеке со съемной крышкой, обеспечивающей легкий доступ. Отсутствие постоянных магнитов позволяет избежать проблем, связанных с ростом стоимости редкоземельных металлов и воздействием добычи полезных ископаемых на окружающую среду. Эта схема также позволяет варьировать силу магнитного поля ротора, что обеспечивает дальнейшую оптимизацию. Тем не менее, для питания этого ротора требуется мощность, что делает эти двигатели менее эффективными, особенно на низких скоростях, когда энергия, необходимая для создания поля, составляет больший процент от общего потребления.

Появление синхронного двигателя переменного тока с возбуждением током произошло настолько недавно в короткой истории электромобилей, что это показывает, насколько рано мы находимся на кривой развития. Есть много места для свежих идей, и уже были сделаны важные повороты, не в последнюю очередь включая отход Теслы от концепции асинхронного двигателя, которая является основой для его собственного бренда и логотипа, к синхронным двигателям с постоянными магнитами. И нам едва исполнилось десятилетие в современной эре электромобилей — мы только начинаем.

Автомобиль и водитель

Этот контент импортирован из OpenWeb. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Выбор двигателя — Electrogenic

Выбор двигателя является сердцем переоборудования электромобиля и имеет далеко идущие последствия, но первое, что нужно сказать, это то, что вы не можете выбрать двигатель в отрыве от остальных дизайн системы. Количество энергии, выдаваемой двигателем, зависит не только от двигателя, но и от аккумулятора и его способности выдавать мощность. Это в сочетании с весом автомобиля повлияет на производительность и диапазон между зарядками. Измените одно, и оно повлияет на другое. Все они будут влиять на стоимость конвертации. Существует также вопрос, где все может быть установлено, поскольку ретро-электромобили, можно с уверенностью сказать, никогда не были рассчитаны на массу аккумуляторов.

Начните думать о крутящем моменте

Так как же выбрать двигатель для переоборудования? Первое, что нужно решить, это какой уровень производительности вы хотите от него. Заманчиво просто сравнить мощность двигателя в кВт или л.с. с мощностью оригинального двигателя внутреннего сгорания (ДВС), но это не лучшая отправная точка. Чтобы отскочить от огней, вам нужен крутящий момент. Электродвигатели развивают максимальный крутящий момент при 0 об/мин и поддерживают его до тех пор, пока двигатель не достигнет максимальной мощности. Нетгейн Hyper9кривая мощности дает хорошую иллюстрацию.

Это невозможно с двигателем с ДВС, и для увеличения крутящего момента, доступного на низких оборотах, большинство производителей автомобилей с ДВС просто увеличивают мощность. Ретро-электромобили очень забавны, потому что крутящий момент, доступный на более низких оборотах, очень велик. Поэтому, если вы не зациклены на максимальной скорости (где вам нужна мощность), хорошей отправной точкой будет выбор двигателя с таким же крутящим моментом, как у оригинального двигателя (или немного больше!).

Вольты определяют амперы

Следующим пунктом является напряжение двигателя. Это определит размер аккумуляторной батареи и ток, который он должен обеспечить, чтобы двигатель мог передавать крутящий момент. Коммерческие электромобили обычно работают при напряжении около 350-400 В, но некоторые автомобили работают при напряжении до 800 В. Поскольку мощность двигателя представляет собой напряжение x ток, чем выше напряжение, тем меньший ток необходим для обеспечения определенной мощности.

Все это имеет смысл, поэтому вам нужен двигатель с более высоким напряжением, верно? Да, но установки высоковольтных систем обходятся дороже, и, хотя может показаться заманчивым установить двигатель Tesla Ludricus в Morris Minor, остальная часть автомобиля может не справиться или не иметь места для батарей. И для обеспечения мощности двигатели с более высоким напряжением часто имеют более высокие обороты, поэтому вам нужно учитывать влияние на трансмиссию — больше передач или использовать двигатель только в части его диапазона? В результате многие переоборудованные электромобили работают на более низком напряжении, например, от 100 до 150 В, и есть несколько интересных двигателей, доступных на этих уровнях напряжения.

Например,

Хорошим примером является Hyper9 от Netgain — потрясающий автомобильный двигатель с герметичным корпусом, который выпускается в двух версиях: 110 В или 144 В. Два разных варианта напряжения дают больше гибкости при выборе комбинаций аккумуляторов. Это наш первый выбор для переоборудования автомобилей среднего класса, и он очень легко адаптируется. Hyper9 развивает пиковый крутящий момент 235 Нм (при нулевых оборотах — это электродвигатель!) и мощность 80 кВт в диапазоне от 5000 до 8000 об/мин. К счастью для больших автомобилей, Hyper9также могут работать как сдвоенные двигатели, поэтому, если вы сделаете это, вы сможете удвоить показатели производительности.

Tesla Model S 85D (имеет аккумуляторную батарею емкостью 85 кВт·ч, буква D означает «двойной двигатель») . Главный двигатель может вращаться со скоростью до 18 000 об/мин и работает при напряжении 350 В. Официально он развивает 660 Нм при 0 об/мин (хотя краткосрочные показания Dyno намного выше) и 375 кВт при 6150 об/мин. Однако ему также требуется аккумуляторная батарея, которая обеспечивает ток более 1000 А при напряжении 350 В. Вот почему Теслы с меньшим аккумуляторным блоком не такие быстрые: двигатель ограничен батареей. В качестве альтернативы, Yasa 750 R производит 790 Нм пикового крутящего момента, 200 кВт пиковой мощности и диапазон скоростей 0–3250 об/мин при осевой длине всего 98 мм. Однако для этого ему нужен аккумулятор на 750 В.

Вообще говоря, более низкое напряжение дешевле: все детали, такие как разъемы, контакторы, системы зарядки и т. д., стоят дешевле при более низком напряжении и т. д. Не забывайте, что некоторым более крупным двигателям также потребуется система охлаждения.

Итак, какой двигатель лучше всего подходит для вашего проекта по переоборудованию?

Это сложный вопрос, и на него лучше всего отвечать на основе опыта, а не расчетов. Выбор двигателя для переоборудования вашего электромобиля — это повторяющийся процесс. Начните с желаемого крутящего момента, сравните параметры напряжения с доступным объемом аккумуляторной батареи, сравните скорость двигателя с вариантами трансмиссии, оцените последствия для цены всего автомобиля, а не только двигателя, а затем снова вернитесь в цикл. Мы часто прорабатываем несколько комбинаций вместе с нашими клиентами, прежде чем найти правильный баланс.

Конечно, если бюджет и место в автомобиле не являются проблемой, то весь мир в ваших руках.

Вкратце

В конечном счете, самое важное в ретро-электромобиле — это ощущения от вождения, в широком смысле:

  • Свойства автомобиля, такие как размер, вес и аэродинамика, являются решающими характеристиками, которые определяют скорость , требования к крутящему моменту и мощности электродвигателя.
  • Обычно мы стремимся по крайней мере соответствовать пиковому крутящему моменту исходного двигателя. И затем помните, что ваш новый Retro-EV будет иметь весь этот крутящий момент, доступный на низких (нулевых) оборотах, поэтому он вызовет у вас еще большую улыбку
  • Принимая во внимание непрерывные уровни мощности, вы сможете определить, сможете ли вы оставаться на определенной высокой скорости. Если вы хотите ехать по автобану со скоростью 140 миль в час, необходимая постоянная мощность может составлять 160 кВт. Круиз со скоростью 70 миль в час и мощностью 60 кВт может быть в порядке.
  • Каков ваш бюджет? Двигатели с более высокой производительностью и более высоким напряжением могут стать очень дорогими в установке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *