Активная реактивная: Что такое активная и реактивная электроэнергия на счетчике

Содержание

Что такое активная и реактивная электроэнергия на счетчике

С одной стороны, работу тока можно легко посчитать, зная силу тока, напряжение и сопротивление нагрузки. До боли знакомые формулы из курса школьной физики выглядят так.

Рис. 1. Формулы

 

И здесь нет ни слова про реактивную составляющую.

С другой стороны, ряд физических процессов на самом деле накладывают свои особенности на эти расчёты. Речь идёт о реактивной энергии. Проблемы с пониманием реактивных процессов приходят вместе со счетами за электроэнергию в крупных предприятиях, ведь в бытовых сетях мы платим только за активную энергию (размеры потребления реактивной энергии настолько малы, что ими просто пренебрегают).

 

Определения

Чтобы понять суть физических процессов начнём с определений.

Активная электроэнергия – это полностью преобразуемая энергия, поступающая в цепь от источника питания. Преобразование может происходить в тепло или в другой вид энергии, но суть остаётся одна – принятая энергия не возвращается обратно в источник.

Пример работы активной энергии: ток, проходя через элемент сопротивления, часть энергии преобразует в нагрев. Эта совершённая работа тока и является активной.

Реактивная электроэнергия – это энергия, возвращаемая обратно источнику тока. То есть ранее полученный и учтённый счётчиком ток, не совершив работы, возвращается. Помимо прочего ток совершает скачок (на короткое время нагрузка сильно возрастает).

Тут без примеров сложно понять процесс.

Самый наглядный – работа конденсатора. Сам по себе конденсатор не преобразует электроэнергию в полезную работу, он её накапливает и отдаёт. Конечно, если часть энергии всё-таки уходит на нагрев элемента, то её можно считать активной. Реактивная же выглядит так:

1.При питании ёмкости переменным напряжением, вместе с увеличением U растёт и заряд конденсатора.

2.В момент начала падения напряжения (второй четвертьпериод на синусоиде) напряжение на конденсаторе оказывается выше, чем у источника. И поэтому конденсатор начинает разряжаться, отдавая энергию обратно в цепь питания (ток течёт в обратном направлении).

3.В следующих двух четвертьпериодах ситуация полностью повторяется, то только напряжение меняется на противоположное.

Ввиду того, что сам конденсатор работы не совершает, принимаемое напряжение достигает своего максимального амплитудного значения (то есть в √2=1,414 раза больше действующего 220В, или 220·1,414=311В).

При работе с индуктивными элементами (катушки, трансформаторы, электродвигатели и т.п.) ситуация аналогична. График показателей можно увидеть на изображении ниже.

Рис. 2. Графики показателей

 

Ввиду того, что современные бытовые приборы состоят из множества разных элементов с «реактивным» эффектом питания и без него, то реактивный ток, протекая в обратном направлении, совершает вполне реальную работу по нагреву активных элементов. Таким образом, реактивная мощность цепи – по сути выражается в побочных потерях и скачках напряжения.

Очень сложно отделить один показатель мощности от другого при расчётах. А система качественного и эффективного учёта стоит дорого, что, собственно, и привело к отказу от измерения объёма потребления реактивных токов в быту.

В крупных коммерческих объектах наоборот, объем потребления реактивной энергии намного больше (из-за обилия силовой техники, снабжаемой мощными электродвигателями, трансформаторами и другими элементами, порождающими реактивный ток), поэтому для них вводится раздельный учёт.

 

Как считается активная и реактивная электроэнергия

Большинство производителей счётчиков электроэнергии для предприятий реализуют простой алгоритм.

Q=(S— P2)1/2

Здесь из полной мощности S отнимается активная мощность P (в облегчённом для понимания виде).

Таким образом, производителю не обязательно организовывать полностью раздельный учёт.

 

Что такое cosϕ (косинус фи)

Ввиду того, что большой объем фактически паразитных реактивных токов нагружает сети поставщика электроэнергии, последние стимулируют потребителей снижать реактивную мощность.

Для числового выражения соотношения активной и реактивной мощностей применяется специальный коэффициент – косинус фи.

Вычисляется он по формуле.

cosϕ = Pакт/Pполн

Где полная мощность – это сумма активной и реактивной.

Чем ближе показатель к единице, тем меньше паразитной нагрузки на сеть.

Такой же коэффициент указывается на шильдиках электроинструмента, оснащённого двигателями. В этом случае cosϕ используется для оценки пиковой потребляемой мощности. Например, номинальная мощность прибора составляет 600 Вт, а cosϕ = 0,7 (средний показатель для подавляющего большинства электроинструмента), тогда пиковая мощность, необходимая для старта электродвигателя будет считаться как Pномин / cosϕ, = 600 Вт / 0,7 = 857 ВА (реактивная мощность выражается в вольт-амперах).

 

Применение компенсаторов реактивной мощности

Чтобы стимулировать потребителей эксплуатировать электросеть без реактивной нагрузки, поставщики электроэнергии вводят дополнительный оплачиваемый тариф на реактивную мощность, но оплату взимают только если среднемесячное потребление превысит определённый коэффициент, например, при соотношении полной и активной мощностей составит свыше 0,9, счёт на оплату реактивной мощности не выставляется.

Для того, чтобы снизить расходы, предприятия ставят специальное оборудование – компенсаторы. Они могут быть двух видов (в соответствии с принципом работы):

  • Ёмкостные;
  • Индуктивные.

Автор: RadioRadar

Что такое активная и реактивная электроэнергия?

Что такое активная и реактивная электроэнергия?

Расчет электрической энергии, используемой бытовым или промышленным электроприбором, обычно выполняется с учетом полной мощности электрического тока, протекающего через измеряемую электрическую цепь. При этом выделяют два показателя, отражающих затраты на полную мощность при обслуживании потребителей. Эти показатели называются активной и реактивной энергией. Кажущаяся мощность — это сумма двух. В этой статье мы постараемся рассказать вам, что такое активная и реактивная электроэнергия и как проверить размер начисленных платежей.

Содержание

  • 1 Полная мощность
  • 2 Активная электроэнергия
  • 3 Понятие реактивной электроэнергии
  • 4 Расчет реактивной электроэнергии
  • 5 Значение коэффициента при учете потерь
  • 6 Расчет стоимости электроэнергии для частных клиентов
  • 7 Учет реактивной электроэнергии для предприятий
  • 8 Коэффициент реактивной энергии
  • 9 Реактивная энергия в многоквартирных домах
  • 10 Частные случаи учета реактивной мощности

Полная мощность

По сложившейся практике потребители платят не за полезную мощность, которая используется непосредственно в компании, а за всю мощность, которую продает поставщик. Эти показатели различаются по единицам измерения: полная мощность измеряется в вольт-амперах (ВА), а полезная мощность — в киловаттах. Активное и реактивное электричество используется всеми электроприборами, подключенными к сети.

Активная электроэнергия

Активная составляющая общей мощности выполняет полезную работу и преобразуется в те виды энергии, которые необходимы потребителю. Для некоторых бытовых приборов и бытовых приборов в расчетах активная и полная мощность совпадают. Среди этих устройств — электрические плиты, лампы накаливания, электрические духовки, обогреватели, утюги, гладильные прессы и так далее.

Если в паспорте указана активная мощность 1 кВт, то суммарная мощность такого устройства составит 1 кВА.

Понятие реактивной электроэнергии

Этот вид электричества присущ цепям, содержащим реактивные элементы. Реактивная электроэнергия — это часть общей отпущенной мощности, которая не расходуется на полезную работу.

В цепях постоянного тока понятие реактивной мощности отсутствует. В цепях переменного тока реактивная составляющая возникает только при наличии индуктивной или емкостной нагрузки. В этом случае возникает несоответствие между фазой тока и фазой напряжения. Этот сдвиг фаз между напряжением и током обозначается символом «φ».

При индуктивной нагрузке в цепи наблюдается отставание по фазе, при емкостной — ее преимущество. Таким образом, до потребителя доходит только часть общей мощности, а основные потери происходят из-за ненужного нагрева приборов и устройств в процессе эксплуатации.

Потери мощности возникают из-за наличия индуктивных катушек и конденсаторов в электрических устройствах. Благодаря им в цепи некоторое время накапливается электричество. Впоследствии накопленная энергия возвращается в схему. Устройства, в потреблении энергии которых присутствует реактивная составляющая электричества, включают переносные электроинструменты, электродвигатели и различные бытовые приборы. Это значение рассчитывается с учетом специального коэффициента мощности, называемого cos.

Расчет реактивной электроэнергии

Коэффициент мощности колеблется от 0,5 до 0,9; точное значение этого параметра можно узнать в паспорте на электроприбор. Полная мощность определяется как отношение активной мощности к коэффициенту.

Например, если в паспорте электродрели указана мощность 600 Вт и значение 0,6, то суммарная мощность, потребляемая устройством, составит 600/06, то есть 1000 ВА. При отсутствии паспортов для расчета общей мощности устройства коэффициент можно принять равным 0,7.

Поскольку одна из основных задач существующих энергосистем — обеспечение полезной мощности конечного потребителя, потери реактивной мощности считаются отрицательным фактором, а увеличение этого показателя ставит под сомнение эффективность электрической схемы в целом. Баланс между активной и реактивной мощностью в цепи можно представить в виде забавной картинки:

Значение коэффициента при учете потерь

Чем выше значение коэффициента мощности, тем меньше будут активные потери электроэнергии, а значит, потребленная электроэнергия будет стоить конечному потребителю немного дешевле. Чтобы увеличить значение этого коэффициента, в электротехнике используются различные методы компенсации недостаточных потерь электроэнергии. Компенсирующие устройства — это ведущие генераторы тока, которые сглаживают фазовый угол между током и напряжением. Иногда с той же целью используются конденсаторные батареи. Они включаются параллельно рабочей цепи и используются как синхронные компенсаторы.

Расчет стоимости электроэнергии для частных клиентов

При индивидуальном потреблении активная и реактивная электроэнергия не разделяется в счетах: с точки зрения потребления доля реактивной энергии невелика. Таким образом, частные потребители с потреблением энергии до 63 А оплачивают счет, в котором вся потребленная электроэнергия считается активной. Дополнительные потери в цепи реактивной электроэнергии отдельно не распределяются и не оплачиваются.

Учет реактивной электроэнергии для предприятий

Бизнес и организация — это нечто другое. На заводах-изготовителях и промышленных цехах установлено огромное количество электрооборудования, а в общей поступающей электроэнергии составляет значительная часть реактивной энергии, которая необходима для работы источников питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, требует четкого разделения и другой формы оплаты. В этом случае основой для регулирования взаимоотношений поставщика электроэнергии и конечных потребителей является стандартный договор. Согласно правилам, изложенным в этом документе, организациям, потребляющим электроэнергию выше 63А, необходимо специальное устройство, обеспечивающее показания реактивной энергии для учета и оплаты.
Сетевая компания устанавливает счетчик реактивной электроэнергии и взимает плату по его показаниям.

Коэффициент реактивной энергии

Как упоминалось выше, активная и реактивная электроэнергия показывается в счетах отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленную норму, плата за реактивную энергию не взимается. Коэффициент отношения можно указать по-разному, его среднее значение 0,15. При превышении этого порогового значения предприятию-потребителю рекомендуется установить компенсирующие устройства.

Реактивная энергия в многоквартирных домах

Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, который потребляет более 63 А. Таким образом, жильцы многоквартирного дома видят в начисленной оплате только всю электроэнергию, поставленную в дом поставщиком. То же правило касается жилищных кооперативов.

Частные случаи учета реактивной мощности

Бывают случаи, когда в многоэтажном доме есть и коммерческие организации, и квартиры. Электроснабжение таких домов регулируется отдельными законами. Например, размер полезной площади может выступать в качестве деления. Если коммерческие организации занимают в многоквартирном доме менее половины полезной площади, плата за реактивную энергию не взимается. В случае превышения порогового процента возникают обязательства по оплате реактивной электроэнергии.

В некоторых случаях жилые дома не освобождаются от уплаты за реактивную энергию. Например, если в здании есть точки подключения лифтов для квартир, плата за использование реактивной электроэнергии взимается отдельно, только для этого оборудования. Владельцы квартир продолжают платить только за активную электроэнергию.

Понимание сущности активной и реактивной энергии позволяет правильно рассчитать экономический эффект от установки различных компенсирующих устройств, снижающих потери от реактивной нагрузки. По статистике такие устройства позволяют увеличить значение cos с 0,6 до 0,97. Таким образом, устройства автоматической компенсации позволяют экономить до трети электроэнергии, поставляемой потребителю. Значительное снижение тепловых потерь увеличивает срок службы устройств и механизмов на производственных площадках и снижает стоимость готовой продукции.

Поделиться:

  • Предыдущая записьКадетские училища после 9 класса. Учебные заведения после 9 класса
  • Следующая записьИнтернационализация образования — это… Инструменты управления процессом интернационализации в образовании

×

Рекомендуем посмотреть

Adblock
detector

Разница между активной и реактивной мощностью (активная и реактивная)

Электрическая

от on

Следуйте @https://twitter. com/aticleworld

1

Наиболее важное различие между активной и реактивной мощностью заключается в том, что активная мощность — это реальная мощность, которая используется в цепи, в то время как реактивная мощность колеблется между нагрузкой и источником.

Прежде чем сравнивать активную и реактивную мощность, я хочу объяснить активную и реактивную мощность. Итак, давайте посмотрим на введение активной, реактивной мощности.

Активная мощность:

Активная мощность также называется фактической мощностью, реальной мощностью или рабочей мощностью. Это мощность, которая фактически питает оборудование и выполняет полезную работу. Измеряется в киловаттах (кВт) или МВт.

Реактивная мощность:

Реактивная мощность — это мощность, необходимая магнитному оборудованию (трансформатору, двигателю и реле) для создания намагничивающего потока. Он течет вперед и назад, что означает, что он движется в обоих направлениях в цепи.

Реактивная энергия вызывает перегрузку линий, трансформаторов и генераторов, не обеспечивая полезной работы. Однако он прописан в счете, поэтому может значительно увеличить общую сумму к оплате. Реактивная мощность измеряется в реактивных киловольт-амперах (кВАр) или МВАР.

Посмотрите на треугольник мощности, чтобы понять взаимосвязь между активной, реактивной и полной мощностью.

На приведенном изображении видно, что комплексная мощность представляет собой векторную сумму активной и реактивной мощности. Кажущаяся мощность – это величина комплексной мощности. давайте посмотрим терминологию, которая использовалась на изображении,

  • P => Активная мощность
  • Q => Реактивная мощность
  • S => комплексная мощность
  • |С| => Полная мощность
  • φ => Фаза напряжения относительно тока

Таким образом, приведенное ниже выражение дает соответственно активную, реактивную и полную мощность.

  • Активная мощность P = V x I cosϕ = V I cosϕ
  • Реактивная мощность Pr или Q = V x I sinϕ = V I sinϕ
  • Комплексная мощность S = P + jQ
  • Полная мощность = |S| = √P² + Q²

 

Теперь, я думаю, мы можем увидеть разницу между активной и реактивной мощностью с помощью диаграммы.

База для сравнения

Активная мощность

Реактивная мощность

Определение Активная мощность — это реальная мощность, рассеиваемая в цепи. Мощность, которая перемещается между нагрузкой и источником, такой тип мощности известен как реактивная мощность
Формула P = V x I cosϕ = V I cosϕ Q = V x I sinϕ = V I sinϕ
Измерительный блок Вт, кВт, МВт ВАр, кВАр, МВАр
Представлен Р В
Причины Производит тепло в нагревателе, свет в лампах и крутящий момент в двигателе. Измеряет коэффициент мощности цепи.
Измерительный прибор Ваттметр Измеритель реактивной мощности

 

Рекомендуемый пост

  • Активная, реактивная и полная мощность
  • SSL против TLS.
  • Разница между HDLC и PPP.
  • Протокол HDLC.
  • Безопасность транспортного уровня (TLS)
  • Программирование SSL на C.
  • Программирование сокетов на C.
  • Разобрать XML-ответ на C без использования библиотеки.
  • Создать HTTP-запрос Get и Post в C.
  • Обработка файлов в C.
  • Протокол связи I2C.
  • Встроенные вопросы для интервью на C.
  • Указатели в C.
  • Вопросы для собеседования по протоколу CAN.
  • Вопросы побитового интервью на C.

Эта запись была размещена в Электротехника. Добавьте постоянную ссылку в закладки.

Активная, реактивная и полная мощность | Самое простое объяснение

Активная, реактивная и полная мощность | Самое простое объяснение

https://www.theelectricalguy.in/wp-content/uploads/2020/06/maxresdefault-1024×576.jpg
1024
576

Гаурав Дж.

Гаурав Дж.

https://secure. gravatar.com/avatar/87a2d2e0182faacb2e003da0504ad293?s=96&d=мм&r=g


Знание активной, реактивной и полной мощности является обязательным для инженера-электрика. Но в большинстве случаев мы приходим к путанице во всех этих силах. И, следовательно, если вы хотите получить кристально ясное объяснение активной, реактивной и полной мощности, я бы порекомендовал вам посмотреть это руководство.

В этом уроке мы узнаем о
  1. Мгновенная мощность
  2. Активная мощность
  3. Реактивная мощность
  4. Различие между активной и реактивной мощностью
  5. Полная мощность
  6. Коэффициент мощности

ты дочитай до конца. Прежде чем мы начнем с объяснения, обратите внимание, что понятие активной, реактивной и полной мощности применимо только для систем переменного тока . Понятие активной, реактивной и полной мощности не применимо для систем постоянного тока.
Чтобы понять, что такое активная, реактивная и полная мощность, мы сначала должны узнать, что такое мгновенная мощность.


Мгновенная мощность

Чтобы понять мгновенную мощность, рассмотрим следующий пример. Резистивная нагрузка подключена к сети переменного тока 230 В.

Допустим, я хочу рассчитать мощность в момент «t», и для этого мне нужно умножить напряжение и ток в момент «t». Это даст нам мощность в конкретный момент «t». Эта сила называется мгновенная мощность . Почему мгновенно? Потому что мы измерили его в конкретный момент.

Мгновенная мощность может быть положительной или отрицательной. Теперь вы можете спросить, что такое положительная сила или отрицательная сила? Итак, давайте разберемся с концепцией положительной силы и отрицательной силы.

Положительная мощность

Мощность называется положительной мощностью, когда она течет от источника к нагрузке. В приведенном выше примере мощность является положительной, если она поступает от источника переменного тока 230 В к нагрузке.

Отрицательная сила

Когда энергия течет от владыки к источнику, эта сила называется отрицательной силой. В приведенном выше примере мощность отрицательна, если она поступает от нагрузки к источнику переменного тока 230 В.

Теперь возникает вопрос, как мощность может передаваться от нагрузки к источнику? И в каком случае это происходит? Мы увидим об этом через несколько минут.

Перейти к содержанию


Активная мощность (P)

Чтобы понять активную мощность, снова рассмотрим схему, показанную ниже. В приведенной ниже схеме мы подключили источник переменного тока 230 В к чисто резистивной нагрузке.

Как известно, в чисто резистивной цепи напряжение и ток совпадают по фазе. В фазе означает, что

  • напряжение и ток достигают своего положительного пика в одно и то же время
  • Они становятся равными нулю в то же время
  • Также они одновременно достигают своего отрицательного пика.

Если вы нарисуете кривую напряжения и тока резистивной цепи, она будет выглядеть так.

Чтобы вычислить мощность в этой цепи, вы можете перемножить напряжение и ток в любой момент, и вы обнаружите, что результирующая мощность является только положительной мощностью.

А такая мощность, которая всегда остается положительной, называется активной мощностью.

Свойства активной мощности

  1. Она всегда положительна
  2. Не меняет своего направления
  3. Поток мощности всегда идет от источника к нагрузке

Перейти к содержанию


Реактивная мощность (Q)

Чтобы понять, что такое реактивная мощность, в нашем примере мы заменим резистивную нагрузку чисто емкостной нагрузкой, как показано на рисунке ниже.

Если вы нарисуете форму отображения напряжения и тока для этой схемы, она будет выглядеть так.

Как видите, ток опережает напряжение. Или просто ток опережает напряжение. Это указывает на то, что напряжение и ток в этой цепи не совпадают по фазе. Противофаза означает,

  • Напряжение и ток не достигают своего положительного пика одновременно
  • Они не становятся равными нулю одновременно
  • И они также не достигают своего отрицательного пика одновременно.

Таким образом, если вы рассчитаете мощность в момент времени, показанный на рисунке ниже, вы получите положительную мощность, потому что и напряжение, и ток положительны.

Если вы подсчитаете мощность в указанный ниже момент времени, вы получите отрицательную мощность, потому что напряжение положительное, а ток отрицательный. А отрицательное умножить на положительное Отрицательное .

На что указывает эта отрицательная сила? Это говорит нам о том, что мощность течет от нагрузки к источнику.
Если продолжить расчет мощности в цепи, форма волны сохранится.

Эта сила движется вперед и назад, как маятник, не совершая никакой полезной работы в системе. И этот тип мощности называется реактивной мощностью.

Конденсатор, катушка индуктивности и любое устройство без футеровки может подавать/поглощать реактивную мощность в систему.

Почему мощность течет от нагрузки к источнику?

При положительном питании конденсатор заряжается или накапливает в нем энергию. Когда мощность становится отрицательной, конденсатор разряжается или высвобождает накопленную энергию. И это причина, по которой мощность течет от нагрузки к источнику.

Свойства реактивной мощности

  1. Эта мощность может быть как положительной, так и отрицательной.
  2. Это всего лишь представление силы, которая движется вперед и назад, не совершая никакой полезной работы.
  3. Обозначается буквой «Q» и измеряется в вар (реактивный вольт-ампер).
  4. Конденсатор, катушка индуктивности и любое нелинейное устройство может вводить/поглощать реактивную мощность в систему

Различие между активной и реактивной мощностью

  1. Мы не можем преобразовать активную мощность в реактивную, а реактивную мощность в активную.
  2. Активная мощность является отдельной величиной, а реактивная мощность является отдельной величиной.
  3. Обе мощности создают нагрузку на линию передачи.
  4. Активная мощность производит тепло, механическую энергию, свет и т. д.
  5. Реактивная мощность представляет собой только мощность, которая колеблется туда-сюда.

Вы также можете посмотреть подробное руководство «Разница между активной и реактивной мощностью».

Перейти к содержимому.


Полная мощность (S)

В системе вы будете иметь все типы нагрузок одновременно. У вас может быть резистивная нагрузка, у вас также может быть индуктивная нагрузка или емкостная нагрузка, или, может быть, комбинация всех типов нагрузок. Рассмотрим приведенный ниже пример, в котором у нас есть резистивная и индуктивная нагрузки, подключенные к одному и тому же источнику.

Резистивная нагрузка потребляет активную мощность, а индуктивная нагрузка потребляет реактивную мощность. Теперь мы не можем сказать, что схема потребляет активную мощность или реактивную мощность, потому что она потребляет обе мощности. И, следовательно, нам нужно другое название для комбинации активной и реактивной мощности. Итак, этот тип комбинации обеих сил называется кажущейся мощностью.

Комбинация активной мощности и реактивной мощности называется полной мощностью .

Мы можем рассчитать полную мощность,

Полная мощность обозначается буквой « S » и измеряется в ВА/кВА/МВА. Трансформаторы рассчитаны на ВА/кВА/МВА.

Перейти к содержимому.


Коэффициент мощности

Коэффициент мощности очень тесно связан с активной, реактивной и полной мощностью, поэтому я привожу его здесь. Если вы хотите узнать подробнее о коэффициенте мощности, у меня есть отдельный плейлист, который вы можете посмотреть здесь.

Если вы попросите любого инженера-электрика определить коэффициент мощности, он/она скажет: «коэффициент мощности — это угол между напряжением и током».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *