Впускная система двигателя
Основным предназначением впускной системы является впуск в двигатель нужного для того чтобы образовалась топливно-воздушная смесь количества воздуха. При работе двигателя система впуска работает вместе с такими системами: рециркуляции отработанных газов, системой впрыска, улавливания паров бензина, с вакуумным усилителем тормозов. Четкая и слаженная работа всех этих составляющих обеспечивается системой управления двигателем.
Составляющие впускной системы: воздухозаборника, воздушного фильтра, дроссельной заслонки и впускного коллектора.
Воздухозаборник.
Используется для забора воздуха из атмосферы.
Воздушный фильтр.
Это фильтрующий элемент произведенный из специальной бумаги и размещенный в отдельном корпусе. Его предназначение – очистка поступающего в двигатель воздуха от механических частичек. Фильтрующий элемент в воздушном фильтре имеет ограниченный срок эксплуатации, по истечению которого или по мере загрязнения его можно заменить на новый.
Дроссельная заслонка.
Предназначена для регулировки объема входящего в двигатель воздуха в зависимости от объема впрыскиваемого бензина. У двигателей с непосредственным впрыском топлива кроме дроссельной заслонки установлены впускные заслонки. Они служат для обеспечения процесса смесеобразования за счет разделения потока входящего воздуха на два впускных канала. Один канал закрывается заслонкой, а по другому воздух может двигаться свободно.
Впускной коллектор.
Предназначен для разделения потока воздуха между цилиндрами двигателя и придания ему необходимого движения.
Принцип работы системы впуска.
Система впуска двигателя работает из-за разницы давлений в цилиндре двигателя и в атмосфере, которая образуется вместе с тактом впуска.
Объем входящего воздуха при этом будет прямо пропорционален объему цилиндра двигателя. Количество входящего воздуха регулируется различным положением дроссельной заслонки.
У двигателей с непосредственным впрыском бензина наряду с дроссельной заслонкой в работу включены впускные заслонки. Их совместная работа может обеспечить три вида смесеобразования:
- послойное;
- бедное гомогенное;
- стехиометрическое гомогенное.
Первый вид используется тогда, когда работа двигателя обеспечивается на малых и средних оборотах. При послойном смесеобразовании дроссельная заслонка практически все время находится в открытом состоянии и прикрывается только для разряжения.
На втором виде смеси работа двигателя обеспечивается в промежуточных режимах. Впускные заслонки при этом стоят в закрытом положении, а дроссельная открывается вместе с крутящим моментом.
Третий вид используется на высоких оборотах двигателя и высокой нагрузке. Впускные заслонки стоят в открытом положении, а дроссельная открывается соответственно требуемому крутящему моменту.
Нам важно Ваше мнение
Конструкция системы впуска, способы увеличения подачи воздуха
Содержание
- 1 Конструкция впускной системы двигателя
- 2 Обзор элементов системы впуска двигателя
- 2. 1 Резонатор
- 2.2 Корпус воздушного фильтра
- 2.3 Дроссельный патрубок
- 2.4 ДМРВ
- 2.5 Дроссельная заслонка
- 2.6 Впускной коллектор
- 3 Доступные методы увеличения подачи воздуха
- 3.1 Установка воздушного фильтра нулевого сопротивления
- 3.2 Холодный впуск
- 3.3 Установка впускного коллектора с иной геометрией
- 4 Резюме
Воздух – крайне необходимый элемент для образования рабочей смеси. Многое зависит от атмосферного давления, количества воздуха, его чистоты. Немаловажна и геометрия движения впускного воздуха, от чего зависит стабильность работы двигателя, а также его КПД.
Конструкция впускной системы двигателя
Простейшая система впуска инжекторного двигателя состоит из следующих деталей:
- резонатор (воздухозаборник),
- корпус воздушного фильтра с фильтром,
- резиновая гофра от корпуса фильтра до дроссельной заслонки,
- ДМРВ или датчик абсолютного давления и датчик температуры воздуха,
- дроссельная заслонка с регулятором холостого хода (РХХ) и датчик положения дроссельной заслонки (ДПДЗ),
- впускной коллектор (ресивер).
Обзор элементов системы впуска двигателя
Резонатор
Представляет собой пластиковый воздухозаборник, который, как правило, установлен под фарами возле радиаторов. Патрубок устанавливается по ходу движения автомобиля, чтобы захватывался поток воздуха.
Конструкция воздухозаборника осуществлена таким образом, чтобы избежать попадания воды в цилиндры.
Корпус воздушного фильтра
Пластиковый короб, в котором устанавливается фильтр. Корпус максимально герметичен, обычно имеет отстойник для мусора.
Фильтр расположен во всей площади корпуса, в составе которого целлюлозная бумага с прорезиненными краями. Рассчитан фильтр таким образом, чтобы обеспечить необходимое сопротивление.
Дроссельный патрубок
Обычно представляет собой гофрированный патрубок. В гофре имеется отдельный патрубок, через который во впускной коллектор попадают картерные газы. К патрубку присоединяется ДМРВ, крепится хомутами с двух сторон во избежание подсоса неучтенного воздуха.
ДМРВ
Датчик имеет в своей основе платиновую проволоку и никелевую сетку в качестве чувствительного элемента. Работа датчика заключается в подсчете впускаемого воздуха, а полученная информация уже передается на электронный блок управления.
Получив данные от датчика массового расхода воздуха, блок управления уже знает, в каком количестве подать топливо.
Дроссельная заслонка
Дроссельная заслонка нужна для дозирования впускаемого воздуха, непосредственно влияющее на количество впрыскиваемого топлива.
За положением открытия заслонки отвечает электронный потенциометр ДПДЗ (датчик положения дроссельной заслонки). В зависимости от открытия заслонки корректируется количество подачи топлива.
Устанавливаемый либо на дросселе, либо на коллекторе, регулятор холостого хода (РХХ), отвечает за поток воздуха в обход закрытого дросселя в режиме холостого хода.
Впускной коллектор
Впускной коллектор равномерно распределяет воздух по цилиндрам, создавая необходимую геометрию потока, а также играет роль в смесеобразовании.
Может быть пластиковым или железным. У современных двигателей ресивер с изменяемой геометрией потока воздуха, а за геометрию отвечают двигающиеся шторки.
Доступные методы увеличения подачи воздуха
От количества попадающего воздуха зависит мощность двигателя. Установка турбины – метод радикальный, однако существуют более простые и дешевые способы:
Установка воздушного фильтра нулевого сопротивления
К данному способу относятся скептически, но эффективность ФНС доказана. Оправдана установка подобного фильтра только в случае комплексного тюнинга, но и без того прибавляет скромных 1-3% мощности за счет снижения сопротивления, а значит, увеличения объема воздуха в камере сгорания.
Холодный впуск
Существуют готовые комплекты холодного впуска. Не на всех автомобилях воздухозаборник способен забирать холодный воздух, температура подкапотного пространства не позволяет.
Конструкция холодного впуска дает возможность попадать в коллектор холодному воздуху, а значит в цилиндры попадает больше воздуха – горение смеси будет более эффективно.
Установка впускного коллектора с иной геометрией
Для автомобилей ВАЗ предусмотрены коллектора под разные потребности: с короткими каналами — мотор будет «верховым», с длинными каналами обеспечить достаточный крутящий момент с холостых до средних оборотов.
Резюме
Вышеуказанные операции по изменению количества впускаемого в систему воздуха, а также геометрии его движения, приводят к незначительному увеличению мощности. Для обеспечения стабильной работы впускной системы требуется ежегодная промывка дросселя и датчиков, а также сокращенный срок замены воздушного фильтра.
Что такое впускная система?
Впускная система представляет собой набор компонентов, которые позволяют двигателю внутреннего сгорания вдыхать так же, как выхлопная система позволяет ему выдыхать. Ранние автомобильные впускные системы были просто впускными отверстиями, которые позволяли воздуху беспрепятственно проходить в карбюратор, но современные системы намного сложнее.
Современные безнаддувные воздухозаборники состоят как минимум из четырех основных элементов (впускной коллектор, воздушный фильтр, датчик массового расхода воздуха и корпус дроссельной заслонки), но они по-прежнему выполняют ту же основную функцию, что и простые воздухозаборники в начале автомобили. Другие воздухозаборники включают такие компоненты, как турбокомпрессоры и нагнетатели для увеличения мощности двигателя.
Содержание
- 1 История автомобильных впускных систем
- 2 Компоненты впускной системы
- 2.1 Турбокомпрессоры и нагнетатели
- 3 Как работает впускная система?
- 4 Отказ системы впуска
История автомобильных систем впуска
На протяжении большей части ранней истории автомобилей системы впуска были чрезвычайно простыми. У первых автомобилей были «системы впуска», которые буквально состояли из ничего, кроме входа свежего воздуха в карбюратор. Это обеспечивало беспрепятственный приток воздуха к карбюратору (а значит и к двигателю, который по мощности хорош, но и с ним были довольно большие проблемы)9.0003
В ранних автомобилях не было ни воздушного, ни топливного фильтров.
Поскольку воздух часто содержит твердые частицы и другой мелкий мусор, особенно в песчаной и пыльной среде, нефильтрованный воздухозаборник может привести к попаданию загрязняющих веществ в карбюратор, что может вызвать целый список проблем. Это привело к разработке первых воздушных фильтров сначала в сельскохозяйственной, а затем в автомобильной промышленности. Согласно Preston Tucker & Others: Tales of Brilliant Automotive Innovators & Innovations, первым серийным автомобилем, оснащенным воздушным фильтром, был Packard 19.15 Твин Шесть.
До введения системы впрыска топлива и компьютерного управления безнаддувные автомобильные системы впуска оставались относительно неизменными. Однако тем временем появились как нагнетатели, так и турбокомпрессоры.
Oldsmobile Jetfire 1962/63 годов был первым серийным автомобилем с турбокомпрессором.
Хотя нагнетатели уходят своими корнями в технологии, предшествовавшие появлению первых автомобилей (и некоторые ранние патенты были выданы до начала 20-го века), первый серийный автомобиль с наддувом появился только в 1921, когда Mercedes оснастил этой технологией две модели. Это добавило нагнетатели Roots к системам впуска Mercedes 6/25/40 и 10/40/65, которые тогда были известны как модели Kompressor.
Первые турбокомпрессоры появились примерно в то же время, но они использовались только в самолетах. В то время в локомотивах, кораблях и других транспортных средствах также использовались дизели с турбонаддувом. Однако первый автомобильный турбокомпрессор не появлялся еще несколько десятилетий. Oldsmobile был первой маркой, представившей нагнетатель, который был включен в 19 модельный год.62/63 Олдсмобиль F85 Джетфайр. Chevrolet также предлагал нагнетатель в 1962 году для ограниченной серии Corvair, которые продавались как «Monza Spyder», а затем как «Corsa».
Следующим крупным достижением в истории систем впуска воздуха стало внедрение других технологий, таких как впрыск топлива и компьютерное управление. Эти технологии и растущие требования к контролю за выбросами привели к разработке таких устройств, как датчики массового расхода воздуха, которые сейчас широко распространены.
Компоненты системы впуска
Простейшие системы впуска состоят не более чем из впускного отверстия для свежего воздуха, но современные (с впрыском топлива) системы обычно включают:
- воздушный фильтр
- расходомер воздуха или датчик
- впускной коллектор
- корпус дроссельной заслонки
Вверху: впускной коллектор
В середине: корпус дроссельной заслонки
Внизу: корпус воздушного фильтра (включая MAF)
Турбокомпрессоры и нагнетатели
Помимо этих основных элементов, двигатели с наддувом и турбонаддувом включают дополнительные компоненты впуска. Эти системы отличаются от двигателей без наддува тем, что в них используется либо турбина с приводом от выхлопных газов (турбокомпрессоры), либо насос с приводом от двигателя (нагнетатели) для увеличения объема воздуха, проходящего через систему впуска.
Как работает система впуска?
Чтобы понять, как работает система впуска, полезно представить двигатель внутреннего сгорания в виде большого воздушного насоса. Он всасывает воздух с одного конца (впуск) и выбрасывает воздух с другого конца (выпуск). Для того, чтобы этот процесс происходил в современных двигателях, постоянно должно быть доступно точное количество чистого отфильтрованного воздуха. Это означает, что система впуска воздуха в основном работает следующим образом:
- обеспечивая доступ воздуха к двигателю
- фильтрация воздуха
- сообщает объем воздуха в блок управления двигателем
Имея это в виду, типичная система впуска в современном автомобиле с впрыском топлива начинается с впускного коллектора, который крепится к головке блока цилиндров. Этот коллектор соединяется с впускными отверстиями на головке блока цилиндров, что позволяет подавать либо воздух, либо воздушно-топливную смесь во время такта впуска каждого цилиндра. Конкретная конфигурация впускного коллектора может широко варьироваться от одного приложения к другому, но обычно они прикреплены к корпусу дроссельной заслонки, который является компонентом, который непосредственно регулирует поток воздуха во впуске.
В большинстве случаев корпус дроссельной заслонки — это компонент, которым вы фактически управляете с помощью педали «газа». Когда вы нажимаете на «газ», вы фактически открываете дроссельную заслонку, что позволяет большему количеству воздуха поступать в двигатель. В то время как большинство двигателей с впрыском топлива имеют один корпус дроссельной заслонки, некоторые из них имеют более одного.
В более старых автомобилях использовались карбюраторы, которые представляли собой компоненты, которые по существу объединяли функциональность топливных форсунок и корпусов дроссельной заслонки в одном компоненте.
Отказ системы впуска
Нагар может вызвать проблемы с работой корпуса дроссельной заслонки.
Поскольку системы впуска состоят из множества различных компонентов, существует множество вещей, которые могут пойти не так. Чаще всего выходит из строя воздушный фильтр, так как он со временем засоряется и требует замены. Когда воздушный фильтр засоряется, он не позволяет двигателю «вдыхать воздух», что может привести к серьезной потере мощности. Кроме того, воздушные фильтры могут быть загрязнены газом или маслом из-за определенных проблем с двигателем. Когда это происходит, необходимо заменить воздушный фильтр, но также необходимо устранить основную проблему (например, прорыв газов и т. д.).
Другие проблемы могут возникнуть с впускным коллектором, дроссельной заслонкой и различными датчиками. Утечка во впускном коллекторе позволяет дополнительному воздуху попасть в систему, которая не контролируется, что приведет к проблемам с управляемостью. Утечки в шлангах, трубках или разъемах между корпусом дроссельной заслонки и датчиком массового расхода воздуха также могут вызывать проблемы по тем же причинам, что и неисправный датчик массового расхода воздуха. Компоненты в корпусе дроссельной заслонки, такие как датчик положения дроссельной заслонки и регулятор холостого хода, также могут вызывать проблемы, как и закоксовывание, загрязнение или внутренние механические неисправности внутри самого корпуса дроссельной заслонки.
3 Ключевые части системы впуска воздуха вашего автомобиля
- Автор: Admin
- •
- 28 августа 2018 г.
Воздух играет ключевую роль в процессах сгорания, которые происходят в сердце двигателя вашего автомобиля. Если ваш бензин не смешается с соответствующим количеством воздуха перед сгоранием, он просто не сможет генерировать необходимое количество энергии.
Воздух попадает в двигатель через систему воздухозаборника с метким названием. Система впуска воздуха состоит из нескольких различных компонентов, каждый из которых играет ключевую роль в обеспечении вашего автомобиля свежим воздухом. Чем больше вы знаете об этих компонентах, тем лучше вы сможете выявить потенциальные проблемы до того, как они станут слишком серьезными. Исходя из этого, в этой статье более подробно рассматриваются три ключевые части системы впуска воздуха вашего автомобиля.
1. Воздушный фильтр
Скорее всего, вы уже немного знаете о первом и, возможно, самом важном компоненте вашей системы впуска воздуха: о воздушном фильтре. Попадая в воздухозаборник на капоте или передней решетке вашего автомобиля, воздух быстро попадает в фильтр. Воздушные фильтры находятся под капотом, на полпути между впускным отверстием и двигателем.
Существует два основных типа воздушных фильтров: открытые контейнеры и вставные фильтры. Открытые капсулы могут обрабатывать гораздо большие объемы воздуха. Это свойство делает их популярными для высокопроизводительных приложений, где они позволяют двигателям генерировать большую мощность. Тем не менее, открытые капсулы, как правило, намного больше и занимают больше места под капотом.
Вставные воздушные фильтры чаще всего используются в легковых автомобилях. Эти плоские фильтры отличаются более обтекаемой конструкцией и более эффективной фильтрацией. Однако, независимо от стиля, все воздушные фильтры могут создать проблемы для вашего автомобиля, если они чрезмерно забиты пылью и мусором.
2. Датчик массового расхода
Как отмечалось выше, эффективное сгорание требует, чтобы свежий воздух и топливо смешивались в строго определенной пропорции. Когда-то это соотношение приходилось кропотливо выставлять вручную — подвиг, на который мог пойти только опытный техник. Однако сегодня почти все автомобили оснащены блоками управления двигателем. Эти похожие на компьютер компоненты контролируют ошеломляющее разнообразие процессов, происходящих внутри вашего автомобиля.
На основе полученной информации блок управления двигателем может вносить изменения для повышения производительности и эффективности. Для оптимизации соотношения воздух-топливо блоку управления двигателем требуются точные данные о расходе воздуха, поступающего в автомобиль. Эти данные поступают от компонента, известного как датчик массового расхода.
Датчик массового расхода измеряет расход воздуха, выходящего из воздушного фильтра. Этот расход может изменяться в зависимости от факторов окружающей среды, таких как температура и давление. Эта информация позволяет блоку управления двигателем вносить изменения в последующие потоки, чтобы получить максимально возможную мощность от вашего топлива.
3. Корпус дроссельной заслонки
Корпус дроссельной заслонки находится между датчиком массового расхода воздуха и впускным коллектором вашего двигателя. Он содержит специальный клапан, известный как бабочка. Бабочка открывается и закрывается, чтобы изменить скорость потока воздуха в двигатель.
Каждый раз, когда вы нажимаете на педаль газа, дроссельная заслонка вашего автомобиля открывается шире, позволяя большему количеству воздуха поступать в двигатель.