Какие двигатели переменного тока называются асинхронными: Двигатели переменного тока, асинхронные двигатели

Содержание

Асинхронный двигатель — принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

 

На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой«. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s — это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр — критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Рекомендуем к прочтению — однофазный асинхронный двигатель. 

  • Просмотров: 90561
  • Асинхронные электродвигатели: схема, принцип работы и устройство

    Асинхронный электродвигатель – это электрический агрегат с вращающимся ротором. Скорость вращения ротора отличается от скорости, с которой вращается магнитное поле статора. Это – одна из важных особенностей работы агрегата, так как если скорости выровняются, то магнитное поле не будет наводить в роторе ток и действие силы на роторную часть прекратится. Именно поэтому двигатель называется асинхронным (у синхронного показатели скоростного вращения совпадают). 

    В данной статье мы сфокусируемся на том, что представляет собой схема работы такого двигателя и – самое главное, насколько она эффективна при его эксплуатации.

    Устройство и принцип действия

    Ток в обмотках статора создает вращающееся магнитное поле. Это поле наводит в роторе ток, который начинает взаимодействовать с магнитным полем таким образом, что ротор начинает вращаться в ту же сторону, что и магнитное поле.

    Относительная разность скоростей вращения ротора и частоты переменного магнитного поля называется скольжением. В установившемся режиме скольжение невелико: 1-8% в зависимости от мощности.

    Асинхронный двигатель

    Подробнее о принципах работы асинхронного электродвигателя – в частности, на примере агрегата трехфазного тока, вы можете прочесть здесь, на сайте, в одном из наших материалов. Далее же мы разберем, какие бывают разновидности асинхронных электрических машин.

    Виды асинхронных двигателей

    Можно выделить 3 базовых типа асинхронных электродвигателей:

    • 1-фазный – с короткозамкнутым ротором
    • 3-х фазный – с короткозамкнутым ротором
    • 3-х фазный – с фазным ротором

    Схема устройства асинхронного двигателя с короткозамкнутым ротором

    То есть, двигатели классифицируются по количеству фаз (1 и 3) и по типу ротора – с короткозамкнутым и с фазным. При этом число фаз с установленным типом ротора никак не взаимосвязано.

    Ещё одна разновидность – асинхронный двигатель с массивным ротором. Ротор сделан целиком из ферромагнитного материала и фактически представляет собой стальной цилиндр, играющий роль как магнитопровода, так и проводника (вместо обмотки). Такой вид двигателя очень прочный и обладает высоким пусковым моментом, однако в роторе могут возникать большие потери энергии, а сам он может сильно нагреваться.

    Какой ротор лучше, фазный или короткозамкнутый?

    Преимущества короткозамкнутого:

    • Более-менее постоянная скорость вне зависимости от разных нагрузок
    • Допустимость кратковременных механических перегрузок
    • Простая конструкция, легкость пуска и автоматизации
    • Более высокие cos φ (коэффициент мощности) и КПД, чем у электродвигателей с фазным ротором

    Недостатки:

    • Трудности в регулировании скорости вращения
    • Большой пусковой ток
    • Низкий мощностной коэффициент при недогрузках

    Преимущества фазного:

    • Высокий начальный вращающий момент
    • Допустимость кратковременных механических перегрузок
    • Более-менее постоянная скорость при разных перегрузках
    • Меньший пусковой ток, чем у двигателей с короткозамкнутым ротором
    • Возможность использования автоматических пусковых устройств

    Недостатки:

    • Большие габариты
    • Коэффициент мощности и КПД ниже, чем у электродвигателей с короткозамкнутым ротором

    Какой двигатель лучше выбрать?

    Асинхронный или коллекторный? Синхронный или асинхронный? Сказать однозначно, что определенный тип двигателя лучше, точно нельзя. В пользу асинхронных моделей говорят их следующие преимущества.

    • Относительно небольшая стоимость
    • Низкие эксплуатационные затраты
    • Отсутствие необходимости в преобразователях при включении в сеть (только для нагрузок, не нуждающихся в регулировании скорости)
    • Отсутствие потребности в дополнительном источнике питания – в отличие от синхронных аналогов

    Тем не менее, у асинхроников есть недостатки. А именно:

    • Малый пусковой момент
    • Высокий пусковой ток
    • Отсутствие возможности регулировки скорости при подключении к сети
    • Ограничение максимальной скорости частотой сети
    • Высокая зависимость электромагнитного момента от напряжения питающей сети
    • Низкий мощностной коэффициент – в отличие от синхронных агрегатов

    Тем не менее, все перечисленные недостатки можно устранить, если питать асинхронный двигатель от статического частотного преобразователя. Кроме того, если соблюдать правила эксплуатации и не перегружать агрегаты, то они исправно прослужат длительный срок.

    Но даже несмотря на то, что синхронные машины обладают довольно конкурентными преимуществами, большинство двигателей сегодня – именно асинхронные. Промышленность, сельское хозяйство, ЖКХ и многие другие отрасли используют именно их за счет высокого КПД. Но коэффициент полезного действия может значительно снижаться за счет таких параметров, как:

    • Высокий пусковой ток
    • Слабый пусковой момент
    • Рассинхрон между механическим моментом на валу привода и механической нагрузкой (это провоцирует высокий рост силы тока и избыточные нагрузки при запуске, а также снижение КПД при пониженной нагрузке)
    • Невозможность точной регулировки скорости работы прибора

    Другими факторами, от которых зависит КПД асинхронного электродвигателя, являются:

    • степень загрузки двигателя по отношению к номинальной
    • конструкция и модель
    • степень износа
    • отклонение напряжения в сети от номинального.

    Как избежать снижения КПД?

    • Обеспечение стабильного уровня загрузки – не ниже 75%
    • Увеличение мощностного коэффициента
    • Регулировать напряжение и частоту подаваемого тока

    Для этого используются:

    • Частотные преобразователи – они плавно изменяют скорость вращения двигателя путем изменения частоты питающего напряжения
    • Устройства плавного пуска – они ограничивают скорость нарастания пускового тока и его предельное значение, как одни из факторов, из-за которых падает КПД

    Итак, асинхронный двигатель имеет довольно широкую область использования и применяется во многих хозяйственных и производственных сферах деятельности. У нас, в компании РУСЭЛТ, представлен широкий выбор электродвигателей данного типа, приобрести который вы можете по ценам, которые ощутимо выгоднее, чем у конкурентов.

    Асинхронный двигатель и двигатель постоянного тока, чем они отличаются

    Асинхронный двигатель и двигатель постоянного тока, чем они отличаются

    Двигатель — устройство, преобразующее какой-либо вид энергии в механическую работу

    Асинхронные двигатели — это двигатели, в процессе работы которых под нагрузкой наблюдается явление скольжения, то есть «отставание» вращения ротора от вращения магнитного поля статора. Другими словами, вращение ротора происходит не синхронно с вращением намагниченности статора, а асинхронно по отношению к этому движению. Вот почему такого рода двигатели называются асинхронными (не синхронными) двигателями.

    В большинстве случаев, произнося словосочетание «асинхронный двигатель», имеют ввиду именно бесколлекторный двигатель переменного тока. Величина скольжения асинхронного двигателя может быть разной в зависимости от нагрузки, а также от параметров питания и способа управления токами обмотки статора.

    Если мы имеем дело с обычным двигателем переменного тока, наподобие АИР712А, то при синхронной частоте вращения магнитного поля в 3000 оборотов в минуту, в условиях номинальной механической нагрузки на валу в 750 ватт, мы будем иметь реальную частоту вращения 2840 оборотов в минуту, а значит величина скольжения составит 0,053.

    Это нормальное явление для асинхронного двигателя. И на справочной табличке мы не увидим круглых цифр оборотов, вроде 3000 или 1500, вместо них там будет указано 2730 или 1325. Вместо 1000 может быть написано например 860, несмотря на то, что магнитное поле во время работы двигателя вращается с частотой 1000 оборотов в минуту, как и должно быть в электрической машине с 3 парами магнитных полюсов, предназначенной для питания переменным током частотой 50 Гц.

    Что касается двигателей постоянного тока, то в большинстве случаев так называют коллекторные двигатели, на скорость вращения ротора у которых влияет не частота тока, а его средняя величина. Датчик скорости может помочь электронной системе управления установить правильную величину тока для получения заданной скорости вращения, однако связь тока и оборотов здесь будет отнюдь не линейной, так как при разной нагрузке токи разной величины дадут очень разные частоты вращения ротора.

    На роторе двигателя постоянного тока может располагаться многосекционная обмотка возбуждения или постоянные магниты. Но сегодня ротор с магнитами характерен скорее для шаговых двигателей, которые тоже относятся к двигателям постоянного тока, однако коллекторно-щеточных узлов не имеют. Как вариант разновидности конструкции мотора постоянного тока — магниты на статоре, а обмотка — на роторе.

    Так или иначе, асинхронный бесколлекторный двигатель имеет мощную рабочую обмотку на статоре, которая в процессе работы разогревается от прохождения по ней рабочего тока, и передает тепло на корпус двигателя. Поэтому и обмотку и корпус двигателя необходимо все время активно охлаждать.

    В связи с этой особенностью, большинство асинхронных двигателей по умолчанию имеют на своих валах крыльчатки вентиляторов, а на корпусах — выступы, вдоль которых вентилятор, как через радиатор, гонит свежий воздух, охлаждая таким образом статор. Поэтому, если перед вами двигатель, на валу которого установлен вентилятор (обычно под крышкой, закрепленной на корпусе двигателя), вдоль корпуса имеются ребра (как на радиаторе), а на шильдике указана конкретная величина оборотов в минуту и величины переменного напряжения 220/380 — пред вами типичный асинхронный двигатель переменного тока.

    В двигателях постоянного тока, с коллекторно-щеточными узлами и с многосекционными многовитковыми обмотками на якарях, выведенными на ламели коллектора, в качестве рабочих обмоток выступают — и обмотка статора, и обмотка ротора (якоря).

    Здесь фактически получается, что рабочая обмотка как-бы разделена на две части: рабочий ток идет и через якорную обмотку, и через статорную обмотку, поэтому проблема нагрева только статора отсутствует, и вентилятор здесь не нужен.

    Для охлаждения достаточно вентиляционных отверстий, через которые можно разглядеть ротор с якорной обмоткой на нем. Поэтому, если перед вами двигатель с коллекторно-щеточным узлом, где коллектор имеет множество ламелей (блестящих пластинок) с выводами от обмоток, и вентилятора словно бы и не предусмотрено — перед вами двигатель постоянного тока.

    Статор двигателя постоянного тока может представлять собой набор постоянных магнитов. Большинство двигателей постоянного тока, рассчитанных на сетевое напряжение, будут легко работать и от переменного тока (пример такого универсального мотора — мотор болгарки).

    Ранее ЭлектроВести писали, что с 7 по 17 марта 2019 года в выставочном центре Palexpo состоится Женевский автосалон. Всего ожидается свыше 100 мировых и европейских премьер!

    По материалам: electrik.info.

    Асинхронный двигатель с короткозамкнутым ротором: конструкция, принцип работы

    Учитывая то, что электроснабжение традиционно осуществляется путём доставки потребителям переменного тока, понятно стремление к созданию электромашин, работающих на поставляемой электроэнергии. В частности, переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих областях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.

    Секрет такой популярности состоит, прежде всего, в простоте конструкции и дешевизне его изготовления. У электромоторов на короткозамкнутых роторах есть и другие преимущества, о которых вы узнаете из данной статьи. А для начала рассмотрим конструктивные особенности этого типа электрических двигателей.

    Конструкция

    В каждом электромоторе есть две важных рабочих детали: ротор и статор. Они заключены в защитный кожух. Для охлаждения проводников обмотки на валу ротора установлен вентилятор. Это общий принцип строения всех типов электродвигателей.

    Конструкции статоров рассматриваемых электродвигателей ничем не отличаются от строения этих деталей в других типах электромоторов, работающих в сетях переменного тока. Сердечники статора, предназначенного для работы при трехфазном напряжении, располагаются по кругу под углом 120º. На них устанавливаются обмотки из изолированной медной проволоки определённого сечения, которые соединяются треугольником или звездой. Конструкция магнитопровода статора жёстко крепится на стенках цилиндрического корпуса.

    Строение электродвигателя понятно из рисунка 1. Обратите внимание на конструкцию обмоток без сердечника в короткозамкнутом роторе.

    Рис. 1. Строение асинхронного двигателя с КЗ Ротором

    Немного по-другому устроен ротор. Конструкция его обмотки очень похожа на беличью клетку. Она состоит из алюминиевых стержней, концы которых замыкают короткозамыкающие кольца. В двигателях большой мощности в качестве короткозамкнутых обмоток ротора можно увидеть применение медных стержней. У этого металла низкое удельное сопротивление, но он дороже алюминия. К тому же медь быстрее плавится, а это не желательно, так как вихревые токи могут сильно нагревать сердечник.

    Конструктивно стержни расположены поверх сердечников ротора, которые состоят из трансформаторной стали. При изготовлении роторов сердечники монтируют на валу, а проводники обмотки впрессовывают (заливают) в пазы магнитопровода. При этом нет необходимости в изоляции пазов сердечника. На рисунке 2 показано фото ротора с КЗ обмотками.

    Рис. 2. Ротор асинхронного двигателя с КЗ обмотками

    Пластины магнитопроводов таких роторов не требуют лаковой изоляции поверхностей. Они очень просты в изготовлении, что удешевляет себестоимость асинхронных электродвигателей, доля которых составляет до 90% от общего числа электромоторов.

    Ротор асинхронно вращается внутри статора. Между этими деталями устанавливаются минимальные расстояния в виде воздушных зазоров. Оптимальный зазор находится в пределах от 0,5 мм до 2 мм.

    В зависимости от количества используемых фаз асинхронные электродвигатели можно разделить на три типа:

    Они отличаются количеством и расположением обмоток статора. Модели с трехфазными обмотками отличаются высокой стабильностью работы при номинальной нагрузке. У них лучшие пусковые характеристики. Зачастую такие электродвигатели используют простую схему пуска.

    Двухфазные двигатели имеют две перпендикулярно расположенных обмотки статора, на каждую из которых поступает переменный ток. Их часто используют в однофазных сетях – одну обмотку подключают напрямую к фазе, а для питания второй применяют фазосдвигающий конденсатор. Без этой детали вращение вала асинхронного электродвигателя самостоятельно не начнётся. В связи с тем, что конденсатор является неотъемлемой частью двухфазного электромотора, такие двигатели ещё называют конденсаторными.

    В конструкции однофазного электродвигателя используют только одну рабочую обмотку. Для запуска вращения ротора применяют пусковую катушку индуктивности, которую через конденсатор кратковременно подключают к сети, либо замыкают накоротко. Эти маломощные моторчики используются в качестве электрических приводов некоторых бытовых приборов.

    Принцип работы

    Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.

    Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:

    n= (f1*60) / p, где n1 – синхронная частота,  f1 частота переменного тока, а pколичество пар полюсов.

    В результате действия магнитной индукции на сердечник ротора, в нём возникнет ЭДС, которая, в свою очередь, вызывает появление электрического тока в замкнутом проводнике. Возникнет сила Ампера, под действием которой замкнутый контур начнёт вращение вдогонку за магнитным полем. В номинальном режиме работы частота вращения ротора немного отстаёт от скорости вращения создаваемого в статоре магнитного поля. При совпадении частот происходит прекращение магнитного потока, ток исчезает в обмотках ротора, вследствие чего прекращается действие силы. Как только скорость вращения вала отстанет, переменными токами магнитных полей, возобновляется действие амперовой силы.

    Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.

    s = 100% * ( n/ n1) = 100% * (n— n2) / n1 , где nsчастота скольжения; n1, n2 – частоты вращений статорных и роторных магнитных полей соответственно.

    С целью уменьшения гармоник ЭДС и сглаживания пульсаций момента силы, стержни короткозамкнутых витков немного скашивают. Взгляните ещё раз на рис. 2 и обратите внимание на расположение стержней, выполняющих роль обмоток ротора, относительно оси вращения.

    Скольжение зависит от того, какую механическую нагрузку приложено к валу двигателя. В асинхронных электромоторах изменение параметров скольжения происходит в диапазоне от 0 до 1. Причём в режиме холостого хода набравший обороты ротор почти не испытывает активного сопротивления. S приближается к нулю.

    Увеличение нагрузки способствует увеличению скольжения, которое может достигнуть единицы, в момент остановки двигателя из-за перегрузки. Такое состояние равносильно режиму короткого замыкания и может вывести устройство из строя.

    Относительная величина отставания соответствующая номинальной нагрузке электрической машины называется номинальным скольжением. Для маломощных электромоторов и двигателей средней мощности этот показатель изменяется в небольших пределах – от 8% до 2%. При неподвижности ротора электродвигателя скольжение стремится к 0, а при работе на холостом ходу оно приближается к 100%.

    Во время запуска электромотора его обмотки испытывают нагрузку, что приводит к резкому увеличению пусковых токов. При достижении номинальных мощностей электрические двигатели с короткозамкнутыми витками самостоятельно восстанавливают номинальную частоту ротора.

    Обратите внимание на кривую крутящего момента скольжения, изображённую на рис. 3.

    Рис. 3. Кривая крутящего момента скольжения

    При увеличении крутящего момента коэффициент s изменяется от 1 до 0 (см. отрезок «моторная область»). Возрастает также скорость вращения вала. Если скорость вращения вала превысит номинальную частоту, то крутящий момент станет отрицательным, а двигатель перейдёт в режим генерации (отрезок «генерирующая область»). В таком режиме ротор будет испытывать магнитное сопротивление, что приведёт к торможению мотора. Колебательный процесс будет повторяться, пока не стабилизируется крутящий момент, а скольжение не приблизится к номинальному значению.

    Преимущества и недостатки

    Повсеместное использование асинхронных двигателей с короткозамкнутыми роторами обусловлено их неоспоримыми преимуществами:

    • стабильностью работы на оптимальных нагрузках;
    • высокой надёжностью в эксплуатации;
    • низкие эксплуатационные затраты;
    • долговечностью функционирования без обслуживания;
    • сравнительно высокими показателями КПД;
    • невысокой стоимостью, по сравнению с моделями на основе фазных роторов и с другими типами электромоторов.

    Из недостатков можно отметить:

    • высокие пусковые токи;
    • чувствительность к перепадам напряжений;
    • низкие коэффициенты скольжений;
    • необходимость в применении устройств, таких как преобразователи частоты, пусковые реостаты и др., для улучшения характеристик электромотора;
    • ЭД с короткозамкнутым ротором нуждаются в дополнительных коммутационных управляющих устройствах, в случаях, когда возникает необходимость регулировать скорость.

    Электродвигатели данного типа имеют приличную механическую характеристику. Несмотря на недостатки, они лидируют по показателям их применения.

    Основные технические характеристики

    В зависимости от класса электродвигателя, его технические характеристики меняются. В рамках данной статьи не ставится задача приведения параметров всех существующих классов двигателей. Мы остановимся на описании основных технических характеристик для электромоторов классов 56 А2 – 80 В2.

    В этом небольшом промежутке на линейке моделей эелектромоторов с короткозамкнутыми роторами можно отметить следующее:

    Мощность составляет от 0,18 кВт (класс 56 А2) до 2,2 кВт (класс 80 В2).

    Ток при максимальном напряжении – от 0,55 А до 5А.

    КПД от 66% до 83%.

    Частота вращения вала для всех моделей из указанного промежутка составляет 3000 об./мин.

    Технические характеристики конкретного двигателя указаны в его паспорте.

    Подключение

    Статорные обмотки трёхфазного АДКР можно подключать по схеме «треугольник» либо «звезда». При этом для звёздочки требуется напряжение выше, чем для треугольника.

    Обратите внимание на то, что электродвигатель, подключенный разными способами к одной и той же сети, потребляет разную мощность. Поэтому нельзя подключать электромотор, рассчитанный на схему «звезда» по принципу треугольника. Но с целью уменьшения пусковых токов можно коммутировать на время пуска контакты звезды в треугольник, но тогда уменьшится и пусковой момент.

    Схемы включения понятны из рисунка 4.

    Рис. 4. Схемы подключения

    Для подключения трёхфазного электрического двигателя к однофазному току применяют фазосдвигающие элементы: конденсаторы, резисторы. Примеры таких подключений смотрите на рисунке 5. Можно использовать как звезду, так и треугольник.

    Рис. 5. Примеры схем подключений в однофазную сеть

    С целью управления работой двигателя в электрическую цепь статора подключаются дополнительные устройства.

    устройство, принцип работы, виды, способы пуска

    Способы пуска и схемы подключения

    Асинхронный электродвигатель с короткозамкнутым ротором обладает низкой себестоимостью, большими пусковыми токами и низким усилием на старте. Поэтому для различных целей могут применять различные способы пуска, снижающие бросок тока в обмотках и улучшающие рабочие характеристики:

    • прямой – напряжение на электродвигатель подается через пускатели или контакторы;
    • переключение схемы соединения обмоток электродвигателя со звезды на треугольник;
    • понижение напряжения;
    • плавный пуск;
    •  изменение частоты питающего напряжения.

    Однофазного асинхронного двигателя.

    Для асинхронного однофазного электродвигателя могут использоваться три основных способа пуска:

    • С расщеплением полюсов – используется в электродвигателях особой конструкции, но недостатком методы является постоянная потеря мощности.
    • С конденсаторным пуском – вводит пусковой конденсатор в момент запуска асинхронного двигателя и убирает его со схемы через несколько секунд после начала работы. Обладает максимальным вращательным моментом.
    • С резисторным пуском электродвигателя – обеспечивает начальный сдвиг между векторами ЭДС обмоток для скольжения в асинхронной машине.

    Трехфазного асинхронного двигателя.

    Трехфазные асинхронные агрегаты могут подключаться такими способами:

    • Напрямую в цепь через пускатель или контактор, что обеспечивает простоту процесса, но формирует максимальные токи. Этот способ не подходит в случае больших механических нагрузок на вал.
    • Переключением схемы со звезды на треугольник – применяется для снижения токов в обмотках электродвигателя за счет уменьшения питающего напряжения с линейного на фазное.
    • Путем подключения через преобразователь напряжения, реостаты или автотрансформатор для снижения разности потенциалов. Также используется изменение числа пар полюсов, частоты питающего напряжения и прочие.

    Помимо этого трехфазные асинхронные двигатели могут использовать прямую и реверсивную схему включения в цепь. Первый вариант применяется только для вращения вала электродвигателя в одном направлении. В реверсивной схеме можно переключать движение рабочего органа в прямом и обратном направлении.

    Рис. 9: прямая схема без возможности реверсирования

    Рассмотрим нереверсивную схему пуска асинхронного электродвигателя (рисунок 9). Здесь, через трехполюсный автомат QF1 питание подается на пускатель KM1. При нажатии кнопки SB2 произойдет подача напряжения на обмотки электродвигателя, его остановка осуществляется кнопкой SB1. Тепловое реле KK1 применяется для контроля температуры нагрева, а лампочка HL1 сигнализирует о включенном состоянии контактора.

    Рисунок 10: схема прямого включения с реверсом

    Реверсивная схема (смотрите рисунок 10) устроена аналогичным образом, но в ней используются два пускателя KM1 и KM2. Прямое включение асинхронного электродвигателя производиться кнопкой SB2, а обратное SB3.

    Асинхронные двигатели | Электротехника и электрооборудование

    Страница 5 из 39

    РАЗДЕЛ ВТОРОЙ
    ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

    Электрические машины, действия которых основаны на электромагнитных явлениях и которые служат для преобразования механической энергии в электрическую, называют электромашинный и генераторами, а преобразующие электрическую энергию в механическую — электродвигателями. Применяют также электрические машины для преобразования электрической энергии одних параметров в другие, которые называют преобразователями. Преобразовываться могут: род тока, частота, напряжение, число фаз и другие параметры электроэнергии.
    Электрические генераторы приводятся во вращение паровыми и водяными турбинами, двигателями внутреннего сгорания и др. Электродвигатели служат для приведения в действие станков, различных машин, транспортного оборудования и др. К электрическим машинам часто относят также трансформаторы — статические аппараты, не имеющие движущихся частей, но по своему устройству и принципу действия имеющие много общего с электрическими машинами. Электрические машины обладают свойством обратимости, т. е. могут работать генератором, если их вращать каким-либо двигателем или если к ним подводить электроэнергию, могут использоваться как электродвигатели. Однако при проектировании электромашин учитывают требования, предъявляемые особенностями их работы генератором или электродвигателем. Электрические машины подразделяются на машины переменного тока и машины постоянного тока. Электрические машины переменного тока разделяют на синхронные, асинхронные и коллекторные. Наибольшее применение имеют синхронные генераторы переменного трехфазного тока и трехфазные асинхронные электродвигатели. Коллекторные электродвигатели переменного тока имеют ограниченное применение вследствие сложности устройства, обслуживания и более высокой стоимости. Основным их преимуществом является возможность регулирования скорости вращения в широких пределах, что затруднительно в асинхронных двигателях. Электрические машины постоянного тока представляют собой сочетание машин переменного тока с механическим выпрямителем- коллектором, являющимся неотъемлемой частью этих машин. С помощью коллектора переменный ток преобразуется в постоянный ток. Электрические машины постоянного тока имеют ограниченную область применения вследствие более высокой стоимости этих машин и их эксплуатации по сравнению с машинами переменного тока.

    ГЛАВА СЕДЬМАЯ
    ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА

    АСИНХРОННЫЕ ДВИГАТЕЛИ
    Асинхронные электродвигатели переменного тока были изобретены и впервые применены русским инженером М. О. Доливо-Добровольским в 1889 г. Асинхронные электродвигатели переменного трехфазного тока вследствие простоты устройства и эксплуатации, надежности действия и низкой стоимости по сравнению с электродвигателями других конструкций, получили самое широкое применение во всех отраслях народного хозяйства, в том числе и для привода строительных машин и механизмов. Питание электродвигателей переменного тока производят через трансформаторы непосредственно от районных электросетей, что уменьшает потери электроэнергии, имеющейся при применении двигателей постоянного тока. В последнем случае помимо трансформации высокого напряжения переменного тока применяется его преобразование в постоянный ток, связанное с дополнительными потерями электроэнергии.

    Асинхронные электромашины, присоединенные к электросети, как и все электрические машины, обладают свойством обратимости, т. е. могут работать как двигатели и как генераторы.
    В первом случае электроэнергия, получаемая из сети, расходуется на приведение электродвигателя во вращение, во втором случае вращение ротора асинхронной машины с помощью механического двигателя (внутреннего сгорания или парового) с определенной скоростью приводит к получению электроэнергии, передаваемой в электросеть.

    Примером работы асинхронной машины в качестве электродвигателя и электрогенератора может быть подъемный кран. При подъеме груза машина работает как электродвигатель, потребляя электроэнергию из сети. Эта же машина может при известных условиях работать генератором, если под весом опускаемого груза ее ротор будет вращаться со скоростью, превышающей определенную величину. В последнем случае энергия будет передаваться в электросеть (рекуперация энергии).

    § 7.1. Принцип действия асинхронного электродвигателя

    Принцип действия трехфазного асинхронного электродвигателя основан на явлении вращающегося магнитного поля, описанном в гл. 5.
    Вращающееся магнитное поле может быть двухполюсным, четырехполюсным, шестиполюсным и т. д.

    Скорость вращения поля определяется соотношением
    (7.1)
    где η — скорость вращения поля, об/мин;

    f — частота трехфазного тока;
    р — число пар полюсов,

    В асинхронном электродвигателе катушки из провода, необходимые для получения вращающегося магнитного поля, размещаются на неподвижной части двигателя — его статоре. В качестве примера на рис. 7.1 схематически показано размещение шести катушек на статоре асинхронного электродвигателя.
    Принцип действия асинхронного двигателя состоит в следующем. Во вращающееся двухполюсное магнитное поле помещен один или несколько замкнутых витков (рис. 7.2).  

    Рис. 7.1. Схема расположения шести катушек на статоре асинхронного электродвигателя

    Рис. 7.2. Принцип действия асинхронного электродвигателя

    На рисунке вращающееся поле условно изображено в виде двух полюсов электромагнита, вращающегося по часовой стрелке. Магнитные силовые линии при вращении поля пересекают виток и по известному нам закону электромагнитной индукции наводят в нем э. д. с. Если замкнуть виток, в нем под действием э. д. с. будет протекать электрический ток.
    Направление тока в проводах витка, определяемое по правилу правой руки*, показано на рисунке крестиком и точкой. Магнитный поток, создаваемый током вокруг витка, будет взаимодействовать с вращающимся магнитным полем статора и в результате этого взаимодействия проводник будет двигаться. Направление механических сил, действующих на проводники, составляющие виток, определяется по правилу левой руки. На рисунке эти силы показаны стрелками. Из рисунка видно, что под действием указанных сил виток будет вращаться в ту же сторону, в какую вращается магнитное поле. Скорость вращения витка оказывается близкой к скорости вращения магнитного поля, но не равной ей (несколько меньшей).

    Таков принцип действия асинхронного электродвигателя. Двигатель называется асинхронным потому, что его ротор вращается не синхронно с вращающимся магнитным полем, т. е. несколько отстает от него. Ни при каких условиях синхронного вращения ротора быть не может, так как в этом случае магнитные силовые линии поля не будут пересекать проводники ротора, а следовательно, в них не будет протекать ток, на взаимодействии которого с вращающимся магнитным полем основана работа электродвигателя.

    § 7.2. Конструктивное устройство асинхронных электродвигателей

    Асинхронный электродвигатель состоит из следующих основных частей: неподвижной части — статора, вращающейся части — ротора и двух подшипниковых щитов, в которые помещают концы вала ротора (рис. 7.3).
    Короткозамкнутый ротор с обмоткой в виде беличьего колеса показан на рис. 7.3. Медные стержни «беличьего колеса» закладываются в пазы ротора и накоротко замыкаются двумя медными торцевыми кольцами (7.3, а).

    * Пользуясь в данном случае правилом правой руки, следует учесть, что направление движении проводника относительно линий магнитного поля будет обратно направлению вращения поля, т. е. будет направлено против часовой стрелки.

    Рис 7.3. Электродвигатель с короткозамкнутым ротором:

    а — беличье колесо ротора; б — короткозамкнутый ротор; в — общий вид

    Рис. 7.4. Стальной лист статора

    Часто «беличье колесо» ротора выполняется из алюминия, путем заливки пазов ротора расплавленным алюминием (7.3, б).
    В чугунный или алюминиевый корпус статора запрессовывается кольцеобразный сердечник, собранный из стальных листов (рис. 7.4), толщиной 0,5 мм, изолированных друг от друга слоем лака или тонкими листами бумаги.  Из таких же стальных штампованных листов собирают ротор. Сердечники служат магнитопроводом для магнитного потока, создаваемого обмоткой статора и ротора, которая размещается в пазах, выштампованных в сердечниках. Устройство сердечников из тонких стальных листов приводит к уменьшению вихревых токов, образуемых в них при пересечении магнитными потоками.

    Обмотка статора выполняется в виде катушек из изолированного провода, заранее заготовленных и уложенных в пазы.
    Шесть концов трехфазной обмотки статора выводятся наружу и крепятся к контактным зажимам специального щитка на корпусе электродвигателя или снабжаются маркированными наконечниками.

    Рис. 7.5. Щитки с зажимами асинхронного двигателя

    Рис. 7.6. Электродвигатель с фазным ротором:

    а — ротор с контактными кольцами; б — общий вид

    Выведенные концы дают возможность соединить обмотку статора и в звезду и в треугольник. При наличии щитка концы фаз подводятся к его зажимам (для удобства пересоединения обмотки) по схеме, указанной на рис. 7.5. Пересоединяя металлические планочки, имеющиеся на щитке, в одном случае получается соединение обмотки в треугольник, в другом — в звезду. При конструкциях электродвигателя без выводного щитка соединение обмотки в звезду или в треугольник достигается соответственным соединением ее выведенных маркированных концов.

    Рис. 7.8. Схема включения асинхронного- двигателя с контактными кольцами:

    1 — обмотка статора; 2 — обмотка ротора; 3 — контактные кольца; 4 — щетки; 5 — реостат

    Рис. 7.7. Пружинный щеткодержатель: а—общий вид; б —щетка

    Пересоединение обмотки статора позволяет использовать один и тот же электродвигатель при двух напряжениях. Так, например, если электродвигатель рассчитан на работу при соединении обмоток статора в звезду под напряжением 380 В, то он может развивать ту же мощность и при тех же оборотах под напряжением 220 В при соединении обмоток статора в треугольник.  Обмотки роторов асинхронных электродвигателей небольшой мощности выполняют короткозамкнутыми, а средней и большой мощности с трехфазной обмоткой из изолированных проводов так же, как и обмотка статора. На рис. 7.6 показан электродвигатель с фазным ротором, трехфазные обмотки которого выполнены из изолированного провода. Обмотка уложена в пазы ротора так, что концы их соединены в звезду на самом роторе, а начала проводов присоединяются к трем контактным кольцам, насаженным на вал ротора и изолированным от вала и друг от друга. Ротор с контактными кольцами, называемый также фазным ротором, позволяет включать в свою цепь добавочное сопротивление реостата при пуске электродвигателя или для регулирования его оборотов. Обмотка ротора соединяется с кольцами изолированным проводом, пропущенным через отверстие, высверленное в валу. По кольцам скользят щетки, через которые обмотка ротора соединяется с реостатом. Щетки изготовляют из угля или смеси угля с графитом. Для машин с контактными кольцами применяются также щетки с содержанием меди или бронзы. На рис. 7.7 показан пружинный щеткодержатель со щеткой и часть контактного кольца. Схема включения асинхронного двигателя с фазным ротором (с контактными кольцами) представлена на рис. 7.8.

    § 7.3. Синхронная скорость вращения и скольжения

    При включении асинхронного двигателя в сеть по обмоткам статора начинает протекать ток, создающий вращающийся магнитный поток. Скорость вращения этого потока % определяется формулой, приведенной в § 7.1, и называется синхронной.  Вслед за вращающимся магнитным потоком начинает вращаться ротор со скоростью n2< n1.
    Отношение

    (7.2)

    называется скольжением, так как показывает, насколько скорость вращения ротора отстает от вращающегося магнитного поля.
    В момент включения электродвигателя, когда его ротор еще не стронулся с места, n2 = 0 и s = 1. Если предположить, что ротор вращается со скоростью магнитного поля, то п2 = щ и s = 0. Таким образом, теоретически скольжение меняется от 0 до 1 и от 0 до 100%. При увеличении нагрузки на валу электродвигателя, т. е. тормозного момента, скольжение ротора возрастает потому, что только при этом будет увеличиваться э. д. с. в обмотке ротора и ток, обусловливающий вращающий момент. В зависимости от номинальной мощности и типов электродвигателей при полной нагрузке скольжение обычно колеблется в пределах от 2 до 8%. У выпускаемых промышленностью электродвигателей повышенного скольжения при полной нагрузке скольжение составляет 8—12%.

    § 7.6. Механическая характеристика асинхронного электродвигателя

    Для электропривода машин, в том числе и строительных, большое значение имеют механические характеристики электродвигателей.
    Механической характеристикой называют зависимость скорости вращения электродвигателя от нагрузки на его валу, т. е. п = f (М), или s = f (М), где п — скорость вращения, s — величина скольжения, М — момент вращения, развиваемый двигателем.

    Рис. 7.10. Механическая характеристика асинхронного двигателя с короткозамкнутым ротором:

    Рис. 7.11. Механические характеристики асинхронного электродвигателя с фазным ротором:
    1 — естественная характеристика; 2 и 3 — искусственные характеристики

    Механические характеристики подразделяются на естественные и и с к у с с т в е н н ы е. Естественной называют такую характеристику электродвигателя, которая образуется без какого-либо изменения схемы его включения (т. е. без введения дополнительного сопротивления в его цепи или изменения величины подводимого напряжения и др.). Искусственными же называют характеристики, получаемые изменением указанных выше величин (дополнительных сопротивлений, величины подводимого напряжения и т. д.).
    На рис. 7.10 приведены механические характеристики асинхронных электродвигателей. На рис. 7.10 показана естественная характеристика двигателя с короткозамкнутым ротором. На участке кривой характеристики а — б — в, соответствующей устойчивой работе двигателя при увеличении вращающего момента от нуля до максимального его значения, скорость вращения уменьшается незначительно. Такая ме ханическая характеристика называется жесткой. Итак, асинхронный двигатель с короткозамкнутым ротором обладает жесткой механической характеристикой.

    На рис. 7.11 показаны механические характеристики асинхронного двигателя с фазным ротором. Кривая 1 — естественная характеристика этого двигателя аналогична рассмотренной выше характеристике двигателя с короткозамкнутым ротором. Остальные кривые 2 и 3 представляют собой искусственные (так называемые — реостатные) механические характеристики того же двигателя, получаемые введением в цепь ротора дополнительных сопротивлений: RY и /?2, причем /?2 > Rx. Как видно из рисунка, искусственные характеристики изменяют характер зависимости п = f (М): при увеличении момента М скорость вращения п значительно уменьшается и тем скорее, чем больше дополнительное сопротивление, вводимое в цепь ротора. Такого рода характеристики называются мягкими. Итак, у асинхронного электродвигателя с фазным ротором есть жесткая естественная механическая характеристика и мягкие искусственные механические характеристики, получаемые при введении в цепь ротора дополнительных сопротивлений: при одном и том же значении М скольжение s, а следовательно, и скорость вращения п могут быть различными. Это свойство двигателя используется в качестве одного из способов регулирования числа оборотов асинхронных двигателей (см. следующий параграф).

    Асинхронный Двигатель Переменного Тока: Подключение, Ремонт

    Строение такого двигателя не отличается большой сложностью

    Электрические моторы заняли в жизни человека почетное место и применяются в приборах различной мощности и габаритов. Встретить их можно повсеместно, начиная от электрических зубных щеток, стиральных машин микроволновых печей до беговых дорожек, промышленного оборудования или огромных автомобилях.

    Причина популярности предельно ясна даже неспециалисту – простота устройства, легкость в обслуживании, рентабельность производства и многое другое, включая повсеместную электрификацию. Исключение, пожалуй, составляют автомобили, так как подать к ним ток по проводам нельзя, если это не троллейбус, но и то, в этом направлении сегодня ведется множество разработок.

    Сегодня мы с вами поговорим о том, что представляет собой асинхронный двигатель переменного тока. Узнаем, как он устроен, и за счет каких принципов работает. Погнали!

    Что такое асинхронный двигатель

    Классический двигатель переменного тока асинхронный

    Трехфазный асинхронный двигатель мало чем отличается от своих собратьев и состоит из двух основных частей – вращающейся и неподвижной, или другими словами ротора и статора. Располагаются они один в другом при этом, не касаясь друг друга. Между деталями имеется небольшой воздушный зазор от 0,5 до 2 миллиметров, в зависимости от конструкции двигателя.

    Схематическое строение

    Однако это не все детали. Давайте разберем строение более подробно.

    Схематическое строение трехфазного двигателя

    • Статор – фактически главная рабочая часть, являющаяся мощным электромагнитом. Состоит он их сердечника, выполненного из тонколистовой технической стали, толщиной всего лишь 0,5 миллиметров, которая покрывается токоизоляционным лаком, и обмотки, сделанной из медной проволоки, которая также изолирована и располагается продольных пазах сердечника

    Строение статора прекрасно видно на представленной выше схеме, где показано, что сердечник собран из множества пластин совмещенных друг с другом.

    Цилиндр на валу снизу – это и есть ротор

    • Ротор – данный элемент также состоит из сердечника, обмотка которого короткозамкнута (хотя бывает и другое строение), который располагается на валу. Сердечник этого элемента также представлена в виде шихтованной детали, однако сталь не покрывается лаком, так как ток, протекающий внутри, будет очень слабым, и естественной оксидной пленки будет вполне достаточно, чтобы ограничить вихревые токи.
    • Вал мотора представляет собой центральную ось, вокруг которой и происходит вращение электромотора. С разных концов на этом элементе располагаются подшипники качения, за счет которых обороты происходят максимально плавно и легко. Сами подшипники запрессованы в боковые крышки, в которых имеются посадочные места под них.

    Совет! Подшипники должны сидеть очень плотно, при этом они должны быть отцентрованы, смазаны, легко вращаться, то есть быть исправными, иначе при высоких оборотах двигатель очень быстро выйдет из строя.

    Разбитая и новые крыльчатки

    • На конце вала, противоположном приводу, располагается небольшая крыльчатка, которая при включенном двигателе выполняет функцию его охлаждения. Кстати, данный элемент тоже может стать причиной появления вибрации в двигателе, если его лопасти отломаются, что негативно сказывается на сроке службы агрегата. Пример разбитого вентилятора можно увидеть на фото выше.
    • Идем по цепочке. Боковые крышки корпуса крепятся к станине, которая удерживает все вышеназванное вместе.

    Также любой двигатель имеет пусковую аппаратуру и силовые цепи, о чем мы подробнее поговорим немного позже.

    Принцип вращение электромагнитного поля

    Электромагнитная индукция в моторах

    Главной особенностью любого электрического двигателя является то, что он способен переводить электрическую энергию в кинетическую, то есть механическую. При этом, разобрав его строение, вы можете увидеть, что никакого прямого или передаточного привода он не имеет. Как же тогда происходит вращение двигателя?

    Вся фишка в том, что обмотка статора способна создавать сильное вращающееся магнитное поле, которое увлекает за собой ротор, при включении мотора в электрическую сеть. Данное магнитное поле имеет определенную частоту вращения, которая прямопропорциональна частоте переменного тока, и имеет обратную пропорциональность числу пар полюсов обмотки.

    То есть данную частоту можно вычислить по формуле: n1 = f1*60/p, где: n1 – частота вращения магнитного поля; f1 – частота переменного тока в Герцах; p – количество пар полюсов.

    Строение асинхронного двигателя переменного тока

    Пока ничего не понятно?

    Ничего, сейчас во всем разберемся.

    • Чтобы наглядно себе представить принцип вращения магнитного поля, давайте рассмотрим примитивную трехфазную обмотку, имеющую всего три витка.

    Пример того, как вращается магнитное поле в электрическом двигателе

    • Витки – это проводники, по которым при включении в сеть протекает электрический ток. Во время этого процесса вокруг проводника возникает электромагнитное поле.
    • Мы знаем, что показатели переменного тока изменяются со временем – сначала он нарастает, затем падает до нуля, потом течет в обратном направлении по тому же принципу, и так до бесконечности. Именно поэтому переменный ток изображают в виде синусоиды.

    Графическое изображение переменного тока

    • В то время как изменяются показатели тока, меняются и параметры магнитного поля, вызываемого им.
    • Особенностью трехфазных двигателей и генераторов является то, что в один момент времени по обмотке статора ток протекает в фазах со смещением на 120 градусов, то есть на треть времени одного такта.
    • Такт – это 1 Герц, то есть прохождение переменным током одного полного цикла колебания синусоиды. Схематически это будет выглядеть вот так.

    Смещение между фазами составляет ровно 120 градусов

    • В результате в статоре двигателя одновременно образуется несколько магнитных полей, которые, взаимодействуя, дают результирующее поле.

    Изменение магнитного поля в разные моменты времени

    • Когда происходит изменение параметров токов, протекающих в фазах, начинает изменяться и результирующее магнитное поле. Выражается это в смене его ориентации, при том, что амплитуда остается одинаковой.
    • В результате получается так, что магнитное поле вращается вокруг некой центральной оси.

    А что будет, если внутрь данного магнитного поля поместить проводник?

    Принцип электромагнитной индукции

    Согласно закону об электромагнитной индукции, который мы подробно описывали в статье про генераторы постоянного и переменного тока, в проводнике возникает электродвижущая сила, сокращенно ЭДС. Если этот проводник замкнут на внешнюю цепь или на себя, то в нем потечет ток.

    Согласно закону Ампера, на проводник с током, помещенным в магнитное поле, начинает действовать сила, и контур начинает вращаться. По этому принципу и работают асинхронные двигатели переменного тока, однако вместо рамки в магнитном поле находится короткозамкнутый ротор, который своим внешним видом напоминает беличье колесо.

    Строение короткозамкнутого ротора

    • Как видно из схемы выше, такой ротор состоит из параллельно расположенных стержней, которые с торцов замкнуты двумя кольцами.
    • При подключении статора к электрической сети, он начинает формировать вращающееся магнитное поле, которое индуктирует во всех стержнях ротора ЭДС, из-за чего ротор начнет вращаться.
    • При этом в разных стержнях будет отличаться направление текущего тока и его величина, в зависимости от того, в каком положении они находятся относительно полюсов магнитного поля. Опять-таки, если не понятно, то отсылаем вас снова к закону об электромагнитной индукции.

    Изменение ЭДС на примере генератора переменного тока

    Интересно знать! Стержни на роторе наклоняют относительно оси его вращения. Делается это для того, чтобы пульсация момента и высшие гармоники ЭДС, сокращающие эффективность двигателя, были меньше.

    Особенности асинхронного двигателя

    Неприхотливые в эксплуатации электромоторы

    Итак, давайте разбираться с тем, какие двигатели переменного тока называются асинхронными.

    Скольжение ротора

    Главной особенностью таких агрегатов является то,  что частота вращения ротора отличается от этого же показателя у магнитного поля. Назовем условно эти значения n2 и n1, соответственно.

    Объяснить это можно тем, что индуцироваться ЭДС может только при этом неравенстве – n2 должна быть меньше n1. Разница в частотах этих вращений называется частотой скольжения, а сам эффект отставания ротора и называется скольжением, которое обозначается как «s». Высчитать этот параметр можно по следующей формуле: s = (n1-n2)/n1.

    Асинхронный двигатель в разрезе

    • Давайте представим себе ситуацию, в которой частоты n1 и n2 будут одинаковыми. В этом случае положение стержней ротора относительно магнитного поля будет неизменным, а значит, движение проводников относительно магнитного поля происходить не будет, то есть ЭДС не индуктируется, и ток не течет. Отсюда следует вывод, что сил приводящих ротор в движение возникать не будет.
    • Если предположить, что изначально двигатель был в движении, то теперь ротор начнет замедляться, отставая от магнитного поля, а значит, стержни сместятся относительно магнитного поля и снова начнет расти ЭДС и движущая сила, то есть вращение снова возобновится.
    • Приведенное описание довольно грубое. В реальности ротор асинхронного двигателя никогда не может догнать скорость вращения магнитного поля, поэтому крутится равномерно.
    • Уровень скольжения тоже величина непостоянная, и может изменяться от 0 до 1, или другими словами, от 0 до 100 процентов. Если скольжение близко к 0, что соответствует холостому режиму работы двигателя, то есть ротор не будет испытывать противодействующий момент. Если значение этого параметра близко к 1 (режим короткого замыкания), то ротор будет неподвижен.
    • Отсюда можно сделать вывод, что скольжение напрямую будет зависеть от механической нагрузки на вал двигателя, и чем она больше, тем выше и коэффициент.

    Принцип работы асинхронного двигателя

    • Для асинхронных двигателей средней и малой мощности допустимый коэффициент скольжения находится в диапазоне от 2 до 8%.

    Мы уже написали, что такой двигатель преобразует электрическую энергию с обмоток статора в кинетическую, однако стоит понимать, что эти силы не равны друг другу. Всегда при преобразовании происходят потери на гистерезисе, нагреве, трении и вихревых токах.

    Данная часть энергии рассеивается в виде тепловой, поэтому двигатель и оборудуется вентилятором для охлаждения.

    Питание двигателя

    Схема подключения

    Давайте теперь разберемся с тем, как происходит подключение асинхронного электродвигателя переменного тока.

    • Мы уже вкратце описывали, как протекает ток в трехфазной сети, но не совсем понятно, какие выгоды такое питание имеет перед однофазными или двухфазными аналогами.
    • В первую очередь можно отметить экономичность системы с таким подключением.
    • Также для нее характерна большая эффективность.

    Фазы подключаются к обмотке статора по определенным схемам, называемым звезда и треугольник, каждая из которых имеет свои особенности. Соединения эти могут быть выполнены как внутри двигателя, так и снаружи, в распределительной коробке. В первом случае из корпуса выходит три провода, а во втором шесть.

    Для лучшего понимания принципов работ схем давайте введем некоторые понятия:

    1. Фазное напряжение – напряжение в одной фазе, то есть разница потенциалов между ее концами.
    2. Линейное напряжение – это разница в потенциалах разных фаз.

    Эти значения очень важны, так как позволяют рассчитать потребляемую мощность электромотора.

    Вот формулы, предназначенные для этого:

    Формулы расчета мощности двигателя

    Данные формулы вычисления мощности двигателя справедливы для подключения и звездой, и треугольником. Однако стоит всегда учитывать, что подключение одного и того же двигателя разными способами будет сказываться на его энергопотреблении.

    А если потребляемая мощность не соответствует параметрам двигателя, то может произойти расплавление обмотки статора, и моментальный выход из строя агрегата.

    Чтобы понять это лучше, давайте разберем один наглядный пример:

    • Представьте двигатель, подключенный по схеме «звезда», который подключен в сеть переменного тока. Линейное напряжение будет составлять 380В, а фазовое 220В. Потребляет при этом он 1А.
    • Высчитываем мощность: 1,73*380*1 = 658 Вт – 1,73 является корнем из 3.
    • Если сменить схему подключения на треугольник, то получится следующее. Линейное напряжение останется без изменений и составит 380В, а вот фазовое напряжение (вычисляем по первой формуле) увеличится и станет таким же 380В.
    • Увеличенное в корень из 3 раз фазовое напряжение, приведет к увеличению в такое же количество раз фазового тока. То есть Iл будет равно не 1, а 1,73*1,73, что приблизительно равняется 3
    • Повторяем расчет мощности: 1,73*380*3 = 1975 Вт.

    Как видно из примера, потребляемая мощность стала намного больше, и если двигатель не рассчитан на работу в таком режиме, то он неизбежно перегорит.

    Как выглядят схематично разбираемые подключения обмотки

    Подключение трехфазного двигателя асинхронного типа к однофазной сети

    Разобрав принцип работы трехфазного асинхронного двигателя переменного тока, становится понятным, что напрямую подключить его к общественным сетям, в который «царит» одна фаза,  не так просто. Выполнить такое подключение становится возможным, если применить фазосдвигающие элементы.

    Варианты подключения трехфазного двигателя к однофазной сети

    При таком подключении двигатель может работать в двух режимах:

    1. Первый ничем не отличается от работы однофазных двигателей (смотреть рисунки а, б и г, где применяется пусковая обмотка). При таком режиме работы двигатель способен выдать лишь 40-50% от своей номинальной мощности.
    2. Второй (в, д, е) – режим конденсаторного двигателя, при котором агрегат способен выдать до 80-ти% мощности (в схему включен постоянно работающий конденсатор).

    Совет! Емкость конденсатора рассчитывается по специальным формулам, согласно выбранной схеме.

    Как управлять электродвигателем

    Управление асинхронным электродвигателем переменного тока может быть реализовано тремя способами:

    Магнитный пускатель

    • Прямое подключение к питающей сети – для этого применяются магнитные пускатели, с помощью которых можно реализовать нереверсивные и реверсивные режимы работы мотора. Отличие, думаем понятно – во втором случае двигатель мотет вращаться в другом направлении. Недостатком такого подключения является то, что в цепи присутствуют большие пусковые токи, что не очень хорошо для самого агрегата. Цена такого устройства будет самой низкой

    Устройство плавного пуска

    • Плавный пуск двигателя – такие устройства для управления применяются тогда, когда вам требуется возможность регулировки скорости вращения вала при запуске двигателя. Показанный прибор уменьшает пусковые токи, в результате чего защищает двигатель от больших пусковых токов. Оно обеспечивает плавный старт и остановку вала.

    Частотный преобразователь

    • Самым дорогим и сложным подключением электрического двигателя является применение частотного преобразователя. Такое решение используется тогда, когда требуется регулировка скорости вращения вала двигателя не только при старте и торможении. Данное устройство способно менять частоту и напряжение подаваемого на двигатель тока.
    • Его применение имеет следующие плюсы: во-первых сокращается энергопотребление мотора; во-вторых, как и устройство плавного пуска, двигатель защищается от ненужных перегрузок, что благотворно сказывается на его состоянии и сроке службы.

    Частотные преобразователи могут реализовать следующие методы регулирования:

    Скалярное управление

    1. Управление скалярного типа. Наиболее простой и недорогой в реализации, обладающий медленным откликом на изменение нагрузки в сети и небольшим диапазоном регулировки, в виде недостатков. Из-за того подобное управление применимо лишь там, где изменение нагрузки происходит по определенному закону, например, переключение режимов в фене.
    2. Управление векторного типа. Данная схема применяется там, где требуется обеспечить независимое управление вращением электродвигателя, например, в лифте. Она позволяет сохранять одинаковые обороты даже при изменяющихся параметрах нагрузки.

    Асинхронный двигатель с фазным ротором

    Более сложная конструкция асинхронного двигателя

    До того момента, как частотные преобразователи получили широкое распространение, асинхронные двигатели большой и средней мощности изготавливались с фазным ротором. Такая конструкция дает двигателю лучшие свойства по плавному пуску и регулировке оборотов, однако  эти агрегаты намного сложнее в плане строения.

    • Статор такого мотора ничем не отличается от того, что устанавливается в двигателях с короткозамкнутым ротором, но вот сам ротор устроен по-другому.
    • Также как и статор, он имеет трехфазную обмотку, которая подключается «звездой» к контактным кольцам. Обмотка укладывается в пазы стального сердечника, от которого она изолируется.

    Кольца контактные

    • Контактные кольца соединяются через графитовые щетки с трехфазным пусковым или регулировочным реостатом, с помощью которого и производится пуск ротора.

    Реостат жидкостного типа

    • Реостаты бывают металлическими и жидкостными. Первые (их еще называют проволочными) – ступенчатые, которые управляются механическим переключением своими руками рукояти контроллера, либо автоматически, при помощи контроллера с электроприводом. Вторые представляют собой некие сосуды с электролитом, в который опущены электроды. Изменение сопротивления такого реостата осуществляется за счет глубины их погружения.

    Интересно знать! Отдельные модели АДФР, с целью увеличения КПД и ресурса щеток, после запуска ротора поднимают щетки и за счет короткозамкнутого механизма замыкают кольца.

    На сегодняшний день устройства с фазными роторами практически не применяются, так как их эффективно заменяют асинхронные двигатели с короткозамкнутым ротором, оснащенные частотным преобразователем.

    На этом подведем итог. Мы узнали строение асинхронного трехфазного двигателя и принцип его работы. Материал для большинства читателей будет теоретическим, но, думаем, все равно интересным. Если вам нужно узнать, как выполнить ремонт асинхронного двигателя переменного тока, то прочтите предыдущую статью на нашем сайте. Там будет дана инструкция по разбору, и рассказано, что можно диагностировать и исправить самостоятельно, не обращаясь в мастерскую. Также рекомендуем к просмотру подобранное нами видео.

    Лаборатория автомобильной электроники Clemson: Асинхронные двигатели переменного тока

    Асинхронные двигатели переменного тока

    Базовое описание
    Двигатели переменного тока

    — это электрические машины, преобразующие электрическую энергию (поставляются в виде
    синусоидально изменяющегося во времени или «переменного» тока) до вращательной механической энергии посредством
    взаимодействие магнитных полей и проводников. В отличие от двигателей, которые работают напрямую от постоянного тока,
    Двигатели переменного тока обычно не требуют щеток или коммутаторов.Одним из типов двигателей переменного тока является асинхронный или асинхронный двигатель переменного тока.

    Асинхронные или асинхронные двигатели
    состоят из статора с обмоткой, способной производить вращающийся магнитный
    поле, и ротор с закороченной обмоткой проводника, в котором ток индуцируется
    вращающееся магнитное поле. Поля, создаваемые током, наведенным в
    ротор создает восстанавливающий момент, отвечающий за вращение ротора.
    Вращающееся магнитное поле, создаваемое статором, легко настраивается с помощью многофазного источника переменного тока.

    Термин «асинхронный» относится к тому факту, что вращение
    ротора всегда медленнее, чем скорость вращения магнитного поля.
    Разница в скорости поля и ротора называется «скольжением», а крутящий момент
    двигателя пропорциональна этому скольжению.
    Таким образом, частота вращения двигателей зависит как от частоты возбуждения, так и от нагрузки.

    Синхронная скорость или теоретическая максимальная скорость
    асинхронный двигатель зависит от частоты питания (например,г. часто 60 Гц в США) и
    количество полюсов. Асинхронные двигатели часто
    называемые двигателями с короткозамкнутым ротором из-за конструкции обмотки ротора.

    Асинхронный двигатель запускается с максимальным скольжением и имеет
    склонность рисовать
    изначально очень высокий ток, особенно при запуске с высокой нагрузкой.
    Это приводит к необходимости иметь
    отдельный пусковой механизм. В случае однофазных двигателей переменного тока
    сначала необходимо привести в движение ротор, чтобы запустить двигатель.Это достигается за счет использования механического
    пусковое усилие или с помощью отдельной пусковой обмотки.

    Хотя большинство электрических и гибридно-электрических автомобилей используют синхронные двигатели переменного тока для главного привода, Tesla Roadster, Tesla Model S, электрический привод Mercedes B-класса и некоторые другие используют асинхронный двигатель переменного тока.

    Производителей
    Baldor, Bircraft, Century, Circor, Emerson, Empire Magnetics, Fasco, Groschopp, Kinetek, Leeson, Met Motors, Motion Control Group, North American Electric, Pittman, Powertec, Remy, Siemens, Sterling Electric, Teco, Toshiba, WEG, Чжунда
    Для получения дополнительной информации
    [1] Асинхронный двигатель, Википедия.
    [2] Двигатели переменного тока, CoolMagnetMan.com.
    [3] Induction Motor Action, учебное пособие на веб-сайте HyperPhysics Университета штата Джорджия.
    [4] Сборка электродвигателя, YouTube, 15 января 2009 г.
    [5] Трехфазный асинхронный двигатель переменного тока, Freescale.com.
    [6] AC Motors, YouTube, 19 мая 2010 г.
    [7] Squirrel Cage Motors, YouTube, 18 июля 2010 г.

    Почему асинхронный двигатель называется асинхронным двигателем?

    Асинхронный двигатель асинхронный?

    Все асинхронные двигатели являются асинхронными двигателями.Асинхронный характер работы асинхронного двигателя происходит из-за скольжения между скоростью вращения поля статора и несколько меньшей скоростью ротора.

    Какое еще название используется для асинхронного двигателя?

    Асинхронный двигатель или асинхронный двигатель — это электродвигатель переменного тока, в котором электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции из магнитного поля обмотки статора.

    Почему он называется синхронным двигателем?

    Следовательно, ротор вращается с той же скоростью, что и вращающееся магнитное поле.Это связано с тем, что двигатель называется синхронным двигателем. Это двигатель с постоянной скоростью, потому что, несмотря на увеличение нагрузки, двигатель работает с той же синхронной скоростью.

    Как узнать, что двигатель асинхронный?

    , если скольжение двигателя равно нулю или ротор имеет ту же скорость вращения, что и поле вращения статора, двигатель называется синхронным двигателем переменного тока. если двигатель переменного тока имеет скольжение или существует разница между скоростью возбуждения статора и ротором, двигатель называется асинхронным двигателем.

    Что такое принцип асинхронного двигателя?

    Двигатель, работающий по принципу электромагнитной индукции, известен как асинхронный двигатель. Электромагнитная индукция — это явление, при котором электродвижущая сила индуцирует электрический проводник, когда он находится во вращающемся магнитном поле.

    Какие типы асинхронных двигателей?

    Типы асинхронных двигателей можно классифицировать в зависимости от того, являются ли они однофазными или трехфазными асинхронными двигателями.Однофазный асинхронный двигатель Асинхронный двигатель с расщепленной фазой. Конденсаторный асинхронный двигатель. Конденсаторный пуск и конденсаторный асинхронный двигатель. Асинхронный двигатель с экранированными полюсами.

    В чем разница между асинхронным двигателем и синхронным двигателем?

    Трехфазный синхронный двигатель — это машина с двойным возбуждением, тогда как асинхронный двигатель — это машина с одним возбуждением. Обмотка якоря синхронного двигателя питается от источника переменного тока, а его обмотка возбуждения — от источника постоянного тока.Обмотка статора асинхронного двигателя питается от источника переменного тока.

    Какие типы двигателей?

    Каждый двигатель имеет определенное применение. Базовые двигатели были разделены на три различных типа: двигатели переменного тока, двигатели постоянного тока и специализированные двигатели.

    В чем разница между синхронным двигателем и асинхронным двигателем?

    Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора. Асинхронный двигатель — это машина, ротор которой вращается со скоростью меньше синхронной.Асинхронный двигатель переменного тока известен как асинхронный двигатель. Синхронный двигатель не имеет пробуксовки.

    Каков принцип работы синхронного двигателя?

    Работа синхронных двигателей зависит от взаимодействия магнитного поля статора с магнитным полем ротора. Статор содержит 3-х фазные обмотки и питается 3-х фазным питанием. Таким образом, обмотка статора создает трехфазное вращающееся магнитное поле.

    Что такое синхронная скорость?

    Синхронная скорость является важным параметром для электродвигателя переменного тока с вращающимся магнитным полем.Он определяется частотой и количеством магнитных полюсов. Синхронная скорость № = [об / с, оборотов в секунду] f = Частота [Гц] p = Количество магнитных полюсов.

    Что значит асинхронный?

    1: не одновременно или не одновременно: несинхронный асинхронный звук.

    Как запускается асинхронный двигатель?

    Когда источник питания подключен к статору трехфазного асинхронного двигателя, создается вращающееся магнитное поле, ротор начинает вращаться, и запускается асинхронный двигатель.Во время пуска скольжение двигателя равно единице, а пусковой ток очень велик.

    Почему часто используются асинхронные двигатели?

    Это наиболее распространенный тип двигателя. В частности, в промышленности используется трехфазный асинхронный двигатель по таким причинам, как низкая стоимость, простота обслуживания и простота обслуживания. Характеристики этого двигателя хороши для сравнения с однофазным двигателем.

    Асинхронный двигатель и синхронный: в чем разница?

    Все вращающиеся электродвигатели переменного и постоянного тока работают за счет взаимодействия двух магнитных полей.Один из них стационарный и (обычно) связан с внешним кожухом двигателя. Другой вращается и связан с вращающимся якорем двигателя (также называемым его ротором). Вращение вызвано взаимодействием двух полей.

    В простом двигателе постоянного тока есть вращающееся магнитное поле, полярность которого меняется каждые пол-оборота с помощью комбинации щеточного коммутатора. Щетки — в основном проводящие углеродные стержни, которые касаются проводов на роторе при их вращении — также служат для подачи электрического тока во вращающийся якорь.В бесщеточном двигателе постоянного тока ситуация несколько иная. Вращающееся поле все еще меняется на противоположное, но посредством коммутации, которая происходит в электронном виде.

    Асинхронный двигатель обладает уникальным качеством, заключающимся в отсутствии электрического соединения между неподвижной и вращающейся обмотками. Сетевой переменный ток подается на клеммы двигателя и питает неподвижные обмотки.

    Все асинхронные двигатели являются асинхронными двигателями. Асинхронное название возникает из-за разницы между скоростью вращения поля статора и несколько меньшей скоростью ротора.

    Ротор с короткозамкнутым ротором от асинхронного двигателя. Этот пример взят из небольшого вентилятора.

    Большинство современных асинхронных двигателей имеют ротор в виде беличьей клетки. Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных на обоих концах токопроводящими кольцами, которые электрически замыкают стержни вместе. Твердый сердечник ротора состоит из листов электротехнической стали.

    Также можно найти асинхронные двигатели с роторами, состоящими из обмоток, а не с короткозамкнутым ротором.Это асинхронные двигатели с фазным ротором. Смысл конструкции состоит в том, чтобы обеспечить средство уменьшения тока ротора, когда двигатель впервые начинает вращаться. Обычно это достигается путем последовательного подключения каждой обмотки ротора к резистору. Обмотки получают ток через некое контактное кольцо. Как только ротор достигает конечной скорости, полюса ротора замыкаются на короткое замыкание, таким образом, электрически становятся такими же, как у ротора с короткозамкнутым ротором.

    Стационарная часть обмоток асинхронного двигателя (статор) подключается к источнику переменного тока.Подача напряжения на статор вызывает прохождение переменного тока в обмотках статора. Прохождение тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.

    Северный полюс статора индуцирует южный полюс ротора. Но положение полюса статора меняется при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс в роторе пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила создается, когда петля из проволоки перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот.Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора, потому что поле ротора всегда на некоторую величину отстает от поля статора. Это отставание заставляет ротор вращаться со скоростью, несколько меньшей, чем скорость поля статора. Разница между ними называется скольжением.

    Размер скольжения может быть разным. Это зависит главным образом от нагрузки двигателя, но также зависит от сопротивления цепи ротора и напряженности поля, создаваемого магнитным потоком статора.Скольжение в двигателе конструкции B составляет от 0,5% до 5%.

    Когда двигатель остановлен, обмотки ротора и статора фактически являются первичной и вторичной обмотками трансформатора. Когда к статору изначально подается переменный ток, ротор не движется. Таким образом, индуцированное в роторе напряжение имеет ту же частоту, что и на статоре. Когда ротор начинает вращаться, частота индуцируемого в нем напряжения f r падает. Если f — частота напряжения статора, то скольжение s связывает эти два значения через f r = sf.Здесь s выражается в виде десятичной дроби.

    Поскольку асинхронный двигатель не имеет щеток, коллектора или подобных движущихся частей, его производство и обслуживание обходятся дешевле, чем другие типы двигателей.

    Для сравнения, рассмотрим синхронный двигатель. Здесь ротор вращается с той же скоростью, то есть синхронно, с магнитным полем статора. Как и асинхронный двигатель, синхронный двигатель переменного тока также содержит статор и ротор. Обмотки статора также подключаются к сети переменного тока, как в асинхронном двигателе.Магнитное поле статора вращается синхронно с частотой сети.

    Обмотка ротора синхронного двигателя может получать ток различными способами, но обычно не за счет индукции (за исключением некоторых конструкций, только для обеспечения пускового момента). Тот факт, что ротор вращается синхронно с частотой сети переменного тока, делает синхронный двигатель полезным для управления высокоточными часами.

    Следует подчеркнуть, что ротор синхронного двигателя переменного тока вращается синхронно с целым числом циклов переменного тока.Это не то же самое, что сказать, что он вращается со скоростью, равной частоте сети. Частота вращения ротора двигателя, то есть синхронная скорость N, составляет:

    N = 120 футов / P = 60 футов / точек

    Где f — частота сети переменного тока в Гц, P — количество полюсов (на фазу), а p — количество пар полюсов на фазу.

    Соответственно, чем больше полюсов, тем медленнее вращается синхронный двигатель. При равной мощности дороже построить более медленный двигатель. При 60 Гц:

    • Двухполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 3600 об / мин.
    • Четырехполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1800 об / мин.
    • Шестиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1200 об / мин.
    • Восьмиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 900 об / мин
    • Десятиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 720 об / мин.
    • Двенадцатиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 600 об / мин.

    Промышленный синхронный двигатель. Синхронные двигатели переменного тока с низкой долей лошадиных сил

    полезны там, где требуется точное время.Синхронные двигатели переменного тока высокой мощности, хотя и более дорогие, чем трехфазные асинхронные двигатели, обладают двумя дополнительными качествами. Несмотря на более высокую начальную стоимость, они могут окупиться в долгосрочной перспективе, поскольку они более энергоэффективны, чем другие типы двигателей. Во-вторых, иногда одновременно, они могут работать с опережающим или единичным коэффициентом мощности, поэтому один или несколько синхронных двигателей переменного тока могут обеспечивать коррекцию коэффициента мощности, а также выполнять полезную работу.

    Существует несколько различных типов синхронных двигателей переменного тока.Обычно их классифицируют по способам создания магнитного поля. Двигатели с независимым возбуждением имеют магнитные полюса, питаемые от внешнего источника. Напротив, магнитные полюса возбуждаются самим двигателем в самовозбуждаемой (также иногда называемой невозбужденной и непосредственно возбужденной) машиной. Типы без возбуждения включают реактивные двигатели, двигатели с гистерезисом и двигатели с постоянными магнитами. Кроме того, существуют двигатели с возбуждением постоянным током.

    Синхронные двигатели без возбуждения имеют стальные роторы.В процессе работы ротор намагничивается необходимыми магнитными полюсами аналогично тому, как это происходит в асинхронном двигателе. Но ротор вращается с той же скоростью и синхронно с вращающимся магнитным полем статора. Причина в том, что в роторе есть прорези. Двигатели запускаются как асинхронные. Когда они приближаются к синхронной скорости, прорези позволяют синхронному магнитному полю фиксироваться на роторе. Затем двигатель вращается с синхронной скоростью до тех пор, пока требуемый крутящий момент низкий.

    В реактивном электродвигателе ротор имеет выступающие полюса, напоминающие отдельные зубья.Ротора меньше, чем полюсов статора, что препятствует совмещению полюсов статора и ротора, и в этом случае вращения не будет. Реактивные двигатели не запускаются автоматически. По этой причине в ротор часто встраивают специальные обмотки (так называемые обмотки с короткозамкнутым ротором), поэтому реактивный двигатель запускается как асинхронный.

    Двигатель с гистерезисом использует широкую петлю гистерезиса в высококоэрцитивном роторе из кобальтовой стали. Из-за гистерезиса фаза намагничивания в роторе отстает от фазы вращающегося магнитного поля статора.Эта задержка создает крутящий момент. При синхронной скорости поля ротора и статора блокируются, обеспечивая непрерывное вращение. Одним из преимуществ гистерезисного двигателя является то, что он самозапускается.

    Синхронный двигатель переменного тока с постоянными магнитами имеет постоянные магниты, встроенные в ротор. Последние лифты приводятся в действие этими двигателями, и коробка передач не требуется.

    Пример двигателя с постоянными магнитами с электронной коммутацией, в данном случае от небольшого воздушного вентилятора. Этот стиль называется аутраннером, потому что ротор находится вне статора и встроен в лопасти вентилятора.Это четырехполюсный двигатель, о чем свидетельствуют четыре обмотки статора (внизу). Также виден датчик Холла, который обеспечивает часть электронной коммутации.

    Синхронный двигатель с прямым возбуждением может называться различными названиями, включая ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянным магнитом. Ротор содержит постоянные магниты. Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).

    Пример того, как на катушки двигателя постоянного тока подается питание в последовательности, которая приводит в движение ротор.

    Компьютер контролирует последовательное включение питания обмоток статора в нужное время с помощью твердотельных переключателей. Питание подается на катушки, намотанные на зубья статора, и если выступающий полюс ротора идеально совмещен с зубом статора, крутящий момент не создается. Если зуб ротора находится под некоторым углом к ​​зубу статора, по крайней мере, некоторый магнитный поток пересекает зазор под углом, не перпендикулярным поверхностям зуба.В результате возникает крутящий момент на роторе. Таким образом, переключение мощности на обмотки статора в нужное время вызывает структуру магнитного потока, которая приводит к движению либо по часовой стрелке, либо против часовой стрелки.

    Еще один тип синхронного двигателя — это реактивный двигатель с регулируемым сопротивлением (SR).
    Его ротор состоит из уложенных друг на друга стальных пластин с рядом зубцов. Зубы магнитопроницаемы, а окружающие их области слабо проницаемы из-за прорезанных в них пазов.

    В отличие от асинхронных двигателей, здесь нет стержней ротора и, следовательно, в роторе отсутствует ток, создающий крутящий момент.Отсутствие проводов какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях, в которых роторы имеют проводники.

    Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора. Затем скорость регулируется путем регулирования крутящего момента (через ток в обмотке). Этот метод аналогичен способу регулирования скорости с помощью тока якоря в традиционном щеточном двигателе постоянного тока.

    Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки.На производство крутящего момента не влияет скорость двигателя. Это отличается от асинхронных двигателей переменного тока, в которых при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения числа оборотов двигателя.

    Наконец, синхронный двигатель переменного тока с возбуждением постоянным током. Для создания магнитного поля требуется выпрямленный источник питания. Эти двигатели обычно имеют мощность, превышающую одну лошадиную силу.

    Почему асинхронный двигатель называется асинхронным двигателем?

    Поскольку асинхронный двигатель не может вращаться с синхронной скоростью, он всегда вращается с меньшей синхронной скоростью.Короче говоря, асинхронный двигатель никогда не вращается с синхронной скоростью, поэтому он называется асинхронным двигателем.

    Асинхронный двигатель — это электродвигатель, работающий от переменного тока. Этот тип двигателя также известен как асинхронный двигатель. Асинхронный двигатель основан на токах, индуцируемых в роторе вращающимся магнитным полем статора. Вот почему это называется индукционной машиной.

    Какое еще название используется для асинхронного двигателя? Асинхронный двигатель или асинхронный двигатель — это электродвигатель переменного тока, в котором электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции из магнитного поля обмотки статора.Таким образом, асинхронный двигатель может быть изготовлен без электрических соединений с ротором.

    Почему синхронный двигатель не запускается автоматически? Синхронные двигатели больше определенного размера не являются двигателями с самозапуском. Это свойство связано с инерцией ротора; он не может мгновенно следить за вращением магнитного поля статора. Как только ротор приближается к синхронной скорости, возбуждается обмотка возбуждения, и двигатель синхронизируется.

    Как узнать, что двигатель асинхронный? Асинхронный двигатель работает только с отстающим коэффициентом мощности.Ротор асинхронного двигателя не требует тока. Скорость двигателя не зависит от изменения нагрузки. Это постоянно.

    Синхронный генератор самозапускается? Нет, они не запускаются самостоятельно. Вам нужно повернуть его до скорости, близкой к рабочей, используя другие средства, такие как небольшой мотор, прикрепленный к валу. Некоторые конструктивные особенности облегчают этот процесс, поскольку синхронный двигатель запускается как асинхронный, а после увеличения скорости поддерживается синхронизация.

    Дополнительные вопросы

    Можно ли использовать синхронный двигатель в качестве генератора?

    Синхронный двигатель становится генератором, когда «нагрузка», приводящая двигатель, сильнее, чем двигатель, и может вращать двигатель, преодолевая крутящий момент, создаваемый двигателем.

    Что такое синхронный двигатель?

    Синхронный двигатель
    Синхронный электродвигатель — это двигатель переменного тока, в котором в установившемся режиме вращение вала синхронизируется с частотой питающего тока; период вращения в точности равен целому числу циклов переменного тока.
    Википедия

    Коэффициент мощности
    об / мин
    Преимущества
    КПД

    Асинхронный двигатель асинхронный?

    Все асинхронные двигатели являются асинхронными двигателями. Асинхронный характер работы асинхронного двигателя происходит из-за скольжения между скоростью вращения поля статора и несколько меньшей скоростью ротора.

    В чем разница между синхронным двигателем и асинхронным двигателем?

    Трехфазный синхронный двигатель — это машина с двойным возбуждением, тогда как асинхронный двигатель — это машина с одним возбуждением.Обмотка якоря синхронного двигателя питается от источника переменного тока, а его обмотка возбуждения — от источника постоянного тока. Обмотка статора асинхронного двигателя питается от источника переменного тока.

    Каково основное применение синхронного двигателя?

    Некоторые из типичных областей применения высокоскоростных синхронных двигателей — это такие приводы, как вентиляторы, нагнетатели, генераторы постоянного тока, линейные валы, центробежные насосы, компрессоры, поршневые насосы, резиновые и бумажные фабрики. Синхронные двигатели используются для регулирования напряжения на концах линий электропередачи.

    Как работают синхронные двигатели?

    Синхронный двигатель — это двигатель, в котором ротор обычно вращается с той же скоростью, что и вращающееся поле в машине. Статор аналогичен статору асинхронной машины, состоящей из цилиндрической железной рамы с обмотками, обычно трехфазными, расположенными в пазах по внутренней периферии.

    Какая польза от синхронного?

    В диапазоне дробных лошадиных сил большинство синхронных двигателей используются там, где требуется точная постоянная скорость.Эти машины обычно используются в аналоговых электрических часах, таймерах и других устройствах, где требуется точное время. В промышленных масштабах большой мощности синхронный двигатель выполняет две важные функции.

    Почему он называется синхронным двигателем?

    Следовательно, ротор вращается с той же скоростью, что и вращающееся магнитное поле. Это связано с тем, что двигатель называется синхронным двигателем. Это двигатель с постоянной скоростью, потому что, несмотря на увеличение нагрузки, двигатель работает с той же синхронной скоростью.

    Что такое синхронный двигатель и как он работает?

    Синхронный двигатель — это двигатель, в котором ротор обычно вращается с той же скоростью, что и вращающееся поле в машине. Статор аналогичен статору асинхронной машины, состоящей из цилиндрической железной рамы с обмотками, обычно трехфазными, расположенными в пазах по внутренней периферии.

    Что такое синхронный двигатель и асинхронный двигатель?

    Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора.Асинхронный двигатель — это машина, ротор которой вращается со скоростью меньше синхронной. Асинхронный двигатель переменного тока известен как асинхронный двигатель. Синхронный двигатель не имеет пробуксовки. Значение скольжения равно нулю.

    Каков принцип работы синхронного двигателя?

    Принцип работы синхронного двигателя можно понять, если рассмотреть обмотки статора, подключенные к трехфазному источнику переменного тока. Влияние тока статора заключается в создании магнитного поля, вращающегося со скоростью 120 f / p оборотов в минуту для частоты f герц и для p полюсов.

    В чем разница между синхронными и асинхронными двигателями?

    Трехфазный синхронный двигатель — это машина с двойным возбуждением, тогда как асинхронный двигатель — это машина с одним возбуждением. Обмотка якоря синхронного двигателя питается от источника переменного тока, а его обмотка возбуждения — от источника постоянного тока. Обмотка статора асинхронного двигателя питается от источника переменного тока.

    Откуда произошло название «синхронный двигатель»?

    Отсюда термин синхронный двигатель, поскольку скорость ротора двигателя такая же, как и вращающееся магнитное поле.Это двигатель с фиксированной скоростью, потому что у него только одна скорость — синхронная. Эта скорость синхронизирована с частотой питания.

    В чем разница между синхронным и асинхронным двигателем?

    В чем разница между синхронным и асинхронным двигателем?

    Какой синхронный двигатель не запускается автоматически?

    Следовательно, на роторе возникает движение вперед и назад, и в результате ротор не вращается. В результате средний крутящий момент на роторе равен нулю.Следовательно, трехфазный синхронный двигатель не является самозапускающимся двигателем.

    Что подразумевается под асинхронным двигателем?

    Асинхронный двигатель или асинхронный двигатель — это электродвигатель переменного тока, в котором электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции из магнитного поля обмотки статора. Таким образом, асинхронный двигатель может быть изготовлен без электрических соединений с ротором.

    В чем разница между асинхронными и синхронными двигателями?

    Загрузите эту статью в формате.Формат PDF

    Растущее значение энергоэффективности побудило производителей электродвигателей продвигать различные схемы, улучшающие характеристики электродвигателей. К сожалению, терминология, связанная с моторными технологиями, может сбивать с толку, отчасти потому, что несколько терминов иногда могут использоваться взаимозаменяемо для обозначения одной и той же базовой конфигурации двигателя. Среди классических примеров этого явления — асинхронные двигатели и асинхронные двигатели.

    Все асинхронные двигатели являются асинхронными двигателями.Асинхронный характер работы асинхронного двигателя происходит из-за скольжения между скоростью вращения поля статора и несколько меньшей скоростью ротора. Более конкретное объяснение того, как возникает это проскальзывание, касается деталей внутреннего устройства двигателя.

    Большинство современных асинхронных двигателей содержат вращающийся элемент (ротор), названный беличьей клеткой. Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных на обоих концах токопроводящими кольцами, которые электрически замыкают стержни вместе.Твердый сердечник ротора состоит из пакетов пластин электротехнической стали. В роторе меньше пазов, чем в статоре. Количество пазов ротора также должно быть нецелым числом, кратным пазам статора, чтобы предотвратить магнитную блокировку зубцов ротора и статора при запуске двигателя.

    Также можно найти асинхронные двигатели с роторами, состоящими из обмоток, а не с короткозамкнутым ротором. Смысл этой конфигурации с фазным ротором состоит в том, чтобы обеспечить средство уменьшения тока ротора, когда двигатель впервые начинает вращаться.Обычно это достигается путем последовательного подключения каждой обмотки ротора к резистору. Обмотки получают ток через некое контактное кольцо. Как только ротор достигает конечной скорости, полюса ротора замыкаются на короткое замыкание, таким образом, электрически становятся такими же, как у ротора с короткозамкнутым ротором.

    Неподвижная часть обмоток двигателя называется якорем или статором. Обмотки статора подключаются к источнику переменного тока. Подача напряжения на статор вызывает прохождение тока в обмотках статора.Прохождение тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.

    Северный полюс статора индуцирует южный полюс ротора. Но полюс статора вращается при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила создается, когда петля из проволоки перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот.Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора. Поле ротора всегда на некоторую величину отстает от поля статора, поэтому он вращается со скоростью, несколько меньшей, чем у статора. Разница между ними называется скольжением.

    Размер скольжения может быть разным. Это зависит главным образом от нагрузки двигателя, но также зависит от сопротивления цепи ротора и напряженности поля, создаваемого магнитным потоком статора.

    Несколько простых уравнений проясняют основные соотношения.

    Когда к статору изначально подается переменный ток, ротор неподвижен. Напряжение, индуцируемое в роторе, имеет ту же частоту, что и на статоре. Когда ротор начинает вращаться, частота индуцированного в нем напряжения, f r , падает. Если f — частота напряжения статора, то скольжение, s, связывает эти два через f r = s f .Здесь s выражается в виде десятичной дроби.

    Когда ротор неподвижен, ротор и статор фактически образуют трансформатор. Таким образом, напряжение E , индуцированное в роторе, задается уравнением трансформатора

    E = 4,44 f N м

    , где Н, = количество проводников под одним полюсом статора (обычно мало для двигателя с короткозамкнутым ротором) и № м = максимальный магнитный поток по Веберсу.Таким образом, напряжение E r , индуцируемое при вращении ротора, зависит от скольжения:

    E r = 4,44 s f N Ñ „ m = s E

    Описание синхронных двигателей

    Синхронный двигатель имеет особую конструкцию ротора, которая позволяет ему вращаться с одинаковой скоростью, то есть синхронно, с полем статора. Одним из примеров синхронного двигателя является шаговый двигатель, широко используемый в приложениях, связанных с управлением положением.Однако недавние достижения в схемах управления мощностью привели к появлению конструкций синхронных двигателей, оптимизированных для использования в таких ситуациях с более высокой мощностью, как вентиляторы, нагнетатели и ведущие мосты внедорожных транспортных средств.

    Есть два основных типа синхронных двигателей:

    • Самовозбуждение — использует принципы, аналогичные принципам работы асинхронных двигателей, и

    • С прямым возбуждением — обычно с постоянными магнитами, но не всегда

    Самовозбуждающийся синхронный двигатель, также называемый реактивным электродвигателем, содержит ротор, отлитый из стали, с выемками или зубьями, называемыми выступающими полюсами.Это выемки, которые позволяют ротору блокироваться и работать с той же скоростью, что и вращающееся магнитное поле.

    Чтобы переместить ротор из одного положения в другое, схема должна последовательно переключать питание на последовательные обмотки / фазы статора аналогично тому, как это происходит в шаговом двигателе. Синхронный двигатель с прямым возбуждением можно называть разными именами. Обычные названия включают ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянным магнитом.В этой конструкции используется ротор, содержащий постоянные магниты. Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).

    Постоянные магниты являются заметными полюсами этой конструкции и предотвращают скольжение. Микропроцессор управляет последовательным переключением питания на обмотки статора в нужное время с помощью твердотельных переключателей, сводя к минимуму пульсации крутящего момента. Принцип действия всех этих типов синхронных двигателей в основном одинаков.Электроэнергия подается на катушки, намотанные на зубья статора, которые заставляют значительный магнитный поток пересекать воздушный зазор между ротором и статором. Поток течет перпендикулярно воздушному зазору. Если явный полюс ротора идеально совмещен с зубом статора, крутящий момент не создается. Если зуб ротора находится под некоторым углом к ​​зубу статора, по крайней мере, часть потока пересекает зазор под углом, не перпендикулярным поверхностям зуба. Результатом является крутящий момент на роторе. Таким образом, переключение мощности на обмотки статора в нужное время вызывает структуру магнитного потока, которая приводит к движению либо по часовой стрелке, либо против часовой стрелки.

    % {[data-embed-type = «image» data-embed-id = «5df27717f6d5f267ee27f7d9» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Eetweb Com Sr Двигатель «data-embed-src =» https://base.imgix.net/files/base/ebm/machinedesign/image/2013/01/eetweb_com_SR_motor.png?auto=format&fit=max&w=1440 «data-embed-caption = «»]}% Еще один тип синхронного двигателя называется реактивным двигателем с переключаемым сопротивлением (SR).

    Его ротор состоит из многослойных стальных пластин с рядом зубцов.Зубы магнитопроницаемы, а окружающие их области слабо проницаемы из-за прорезанных в них щелей. Таким образом, ротор не требует обмоток, редкоземельных материалов или магнитов.

    В отличие от асинхронных двигателей, здесь нет стержней ротора и, следовательно, в роторе отсутствует ток, создающий крутящий момент. Отсутствие проводов какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях, в которых роторы имеют проводники. Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора.Затем скорость регулируется путем регулирования крутящего момента (через ток в обмотке). Этот метод аналогичен тому, как скорость регулируется током якоря в традиционном щеточном двигателе постоянного тока.

    Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки. На производство крутящего момента не влияет скорость двигателя. Это отличается от асинхронных двигателей переменного тока, в которых при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения скорости вращения двигателя.

    Разница между синхронным и асинхронным двигателем (со сравнительной таблицей)

    Разница между синхронным двигателем и асинхронным двигателем объясняется с учетом таких факторов, как его тип, скольжение, потребность в дополнительном источнике питания, требования к контактным кольцам и щеткам, их стоимость, эффективность, коэффициент мощности, источник тока, скорость, самозапуск , влияние на крутящий момент из-за изменения напряжения, их рабочей скорости и различных применений как синхронного, так и асинхронного двигателя.

    Различия между синхронным и асинхронным двигателем объясняются ниже в табличной форме.

    BASIS СИНХРОННЫЙ ДВИГАТЕЛЬ АСИНХРОННЫЙ ДВИГАТЕЛЬ
    Определение Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора.
    N = NS = 120f / P
    Асинхронный двигатель — это машина, ротор которой вращается со скоростью, меньшей, чем синхронная скорость.
    N
    Тип Бесщеточный двигатель, двигатель с переменным сопротивлением, двигатель с регулируемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. Асинхронный двигатель переменного тока известен как асинхронный двигатель.
    Скольжение Без проскальзывания. Значение скольжения равно нулю. Имеют пробуксовку, поэтому величина пробуксовки не равна нулю.
    Дополнительный источник питания Требуется дополнительный источник питания постоянного тока для первоначального вращения ротора, близкого к синхронной скорости. Не требует дополнительных стартовых источников.
    Контактное кольцо и щетки Требуются контактное кольцо и щетки Контактное кольцо и щетки не требуются.
    Стоимость Синхронный двигатель дороже по сравнению с асинхронным двигателем Дешевле
    КПД КПД выше, чем у асинхронного двигателя. Менее эффективный
    Коэффициент мощности Изменяя возбуждение, коэффициент мощности может быть соответственно отрегулирован как отстающий, опережающий или единичный. Асинхронный двигатель работает только с отстающим коэффициентом мощности.
    Электропитание Ток подается на ротор синхронного двигателя Ротор асинхронного двигателя не требует тока.
    Скорость Скорость двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
    Самозапуск Синхронный двигатель не самозапускается Самозапускается
    Влияние на крутящий момент Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя Изменение приложенного напряжения влияет на крутящий момент асинхронного двигателя
    Рабочая скорость Они работают плавно и относительно хорошо на низкой скорости, ниже 300 об / мин. Двигатель работает со скоростью выше 600 об / мин безупречно.
    Применения Синхронные двигатели используются на электростанциях, обрабатывающей промышленности и т. Д., Они также используются в качестве регулятора напряжения. Используется в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и подъемниках. и т. д.

    Синхронный двигатель — это двигатель, который работает с синхронной скоростью, то есть скорость ротора равна скорости статора двигателя.Отсюда следует соотношение N = N S = 120f / P, где N — скорость ротора, а Ns — синхронная скорость.

    Асинхронный двигатель — это асинхронный двигатель переменного тока. Ротор Асинхронного двигателя вращается со скоростью меньше синхронной, т.е. N S

    Разница между синхронным и асинхронным двигателем

    1. Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора. Асинхронный двигатель — это машина, ротор которой вращается со скоростью меньше синхронной.
    2. Бесщеточный двигатель, двигатель с регулируемым сопротивлением, двигатель с регулируемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. Асинхронный двигатель переменного тока известен как асинхронный двигатель.
    3. Синхронный двигатель не имеет скольжения. Значение скольжения равно нулю. Асинхронный двигатель имеет скольжение, поэтому значение скольжения не равно нулю.
    4. Синхронному двигателю требуется дополнительный источник постоянного тока для первоначального вращения ротора, близкого к синхронной скорости. Асинхронный двигатель не требует дополнительного источника пуска.
    5. Контактное кольцо и щетки необходимы в синхронном двигателе, тогда как асинхронный двигатель не требует контактного кольца и щеток. Только асинхронный двигатель с обмоткой требует и контактного кольца, и щеток.
    6. Синхронный двигатель дороже асинхронного двигателя.
    7. КПД синхронного двигателя больше, чем у асинхронного двигателя.
    8. Путем изменения возбуждения коэффициент мощности синхронного двигателя может быть соответственно отрегулирован как отстающий, опережающий или единичный, тогда как асинхронный двигатель работает только с отстающим коэффициентом мощности.
    9. Ток подается на ротор синхронного двигателя. Ротор асинхронного двигателя не требует тока.
    10. Скорость синхронного двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
    11. Синхронный двигатель не запускается автоматически, тогда как асинхронный двигатель запускается автоматически.
    12. Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя, но влияет на крутящий момент асинхронного двигателя.
    13. Синхронный двигатель работает плавно и относительно хорошо на низкой скорости, которая ниже 300 об / мин, тогда как скорость выше 600 об / мин работа асинхронного двигателя превосходна. Асинхронные двигатели используются в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и лифтах. и т. д.
    14. Синхронный двигатель используется в различных сферах применения на электростанциях, в обрабатывающей промышленности и т. Д. Он также используется в качестве регулятора напряжения.

    Таким образом, синхронный двигатель отличается от асинхронного двигателя.

    Асинхронный двигатель | Двигатель переменного тока

    Асинхронный двигатель — это электродвигатель, работающий от переменного тока. Следовательно, это то, что мы называем двигателем переменного тока. Этот тип двигателя также известен как асинхронный двигатель.

    Асинхронный двигатель основан на токах, индуцируемых в роторе вращающимся магнитным полем статора. Вот почему это называется индукционной машиной. Чтобы иметь возможность индуцировать электрический ток в роторе, необходимо, чтобы ротор подвергался изменению магнитного потока, создаваемого статором с частотой мощности или синхронизма, ротор размагничивается, когда он достигает синхронизма, поскольку не видит изменения магнитного потока.По этой причине двигатель вращается с другой скоростью, чем поле статора, и поэтому вращается асинхронно.

    Асинхронные или асинхронные двигатели, будучи прочными и дешевыми, являются наиболее широко используемыми двигателями в промышленности. В этих двигателях вращающееся поле имеет синхронизацию скорости в соответствии с частотой питающей линии.

    Асинхронный двигатель — наиболее распространенный тип электродвигателя. В частности, трехфазный асинхронный двигатель является наиболее часто используемым типом двигателя в промышленности.Этот успех в основном обусловлен следующими причинами:

    • По сравнению с другими электродвигателями такой же мощности их стоимость ниже.
    • Это очень простые двигатели, которые очень просты в обслуживании.
    • Асинхронный двигатель имеет лучшие характеристики по сравнению с однофазным двигателем. По этой причине однофазный двигатель используется в небольших бытовых приборах и приборах.

    Важной особенностью асинхронных электродвигателей является то, что вы не можете постепенно изменять скорость или, следовательно, мощность.Рабочая скорость асинхронных двигателей зависит от частоты питания и количества полюсов.

    Типы асинхронных двигателей

    Классификация различных типов асинхронных двигателей зависит от используемого напряжения переменного тока:

    • Трехфазный асинхронный двигатель. Этот тип двигателя использует ток 400 В.
    • Однофазный асинхронный двигатель. Этот тип двигателя использует ток 230 В.

    Трехфазный асинхронный двигатель может запускаться разными способами: звезда-треугольник, преобразователем частоты, сопротивлением статора или резисторами ротора.Зависит от характеристик двигателя.

    Трехфазный двигатель — это надежный двигатель, не требующий переключателя. Большинство трехфазных асинхронных двигателей имеют сбалансированную нагрузку. Это двигатели, которые потребляют одно и то же в трех фазах, независимо от того, соединены ли они звездой или треугольником. Напряжения в каждой фазе в этом случае равны результату деления линейного напряжения на корень из трех. Например, если линейное напряжение составляет 400 вольт, то напряжение каждой фазы составляет 230 вольт.

    Двигатель с короткозамкнутым ротором

    Двигатель с короткозамкнутым ротором — это тип асинхронного двигателя. В типе электродвигателя ротор состоит из ряда стержней, расположенных в канавках венца ротора, соединенных своими концами с двумя кольцами.

    Добавить комментарий

    Ваш адрес email не будет опубликован.