Как работают ракетные двигатели? — Hi-News.ru
Освоение космоса — самое удивительное из мероприятий, когда-либо проводимых человечеством. И большую часть удивления составляет сложность. Освоение космоса осложняется массой проблем, которые нужно решить и преодолеть. Например, безвоздушное пространство, проблема с температурой, проблема повторного входа в атмосферу, орбитальная механика, микрометеориты и космический мусор, космическая и солнечная радиация, логистика в условиях невесомости и другое. Но самая сложная проблема — это просто оторвать космический корабль от земли. Здесь не обойтись без ракетного двигателя, поэтому в этой статье мы рассмотрим именно это изобретение человечества.
С одной стороны, ракетные двигатели настолько просто устроены, что за небольшую копейку вы сможете построить ракету самостоятельно. С другой стороны, ракетные двигатели (и их топливные системы) настолько сложны, что доставкой людей на орбиту, по сути, занимаются только три страны мира.
Когда люди задумываются о двигателе или моторе, они думают о вращении. К примеру, бензиновый двигатель автомобиля производит энергию вращения, чтобы двигать колеса. Электродвигатель производит энергию вращения для движения вентилятора или диска. Паровой двигатель делает то же самое, чтобы вращать паровую турбину.
Ракетные двигатели принципиально отличаются. Ракетные двигатели — это реактивные двигатели. Основной принцип движения ракетного двигателя — это знаменитый принцип Ньютона, «на каждое действие есть равное противодействие». Ракетный двигатель выбрасывает массу в одном направлении, а благодаря принципу Ньютона движется в противоположном направлении.
Понятие «выбрасывания массы и движения по принципу Ньютона» может быть сложно понять с первого раза, потому что ничего не разобрать. Ракетные двигатели, кажется, работают с огнем, шумом и давлением, а не «толкают вещи». Давайте рассмотрим несколько примеров, чтобы получить более полную картину реальности.
Если вы когда-нибудь стреляли из оружия, желательно из дробовика 12-го калибра, то вы знаете, что такое отдача. Когда вы стреляете из оружия, оно отдает вам в плечо, достаточно ощутимо. Этот толчок и есть реакция. Дробовик выпуливает около 30 грамм металла в одном направлении со скоростью больше 1000 км/ч, и ваше плечо чувствует отдачу. Если бы вы стояли на скейтборде или были в роликах, то выстрел из дробовика сработал бы как реактивный двигатель, и вы покатились бы в противоположном направлении.
Если вы когда-либо наблюдали за работой пожарного шлага, вы наверняка заметили, что его достаточно сложно удержать (иногда пожарные вдвоем и втроем его держат). Шланг работает как ракетный двигатель. Он выбрасывает воду в одном направлении, а пожарные используют свою силу, чтобы противостоять реакции. Если они упустят рукав, он будет метаться повсюду. Если бы пожарные стоял на скейтбордах, пожарный рукав разогнал бы их до приличной скорости.
Когда вы надуваете воздушный шарик и выпускаете его, он летает по всей комнате, испуская воздух, — так работает ракетный двигатель. В данном случае вы выпускаете молекулы воздуха из шара. Многие считают, что молекулы воздуха ничего не весят, но это не так. Когда вы выпускаете их из шарика, шарик летит в противоположном направлении.
Еще один сценарий, который поможет объяснить действие и противодействие, — это космический бейсбол. Представьте, что вы вышли в скафандре в космос недалеко от своего космического судна, и у вас в руке бейсбольный мяч. Если вы его бросите, ваше тело среагирует в противоположном направлении от мяча. Допустим, он весит 450 гр, а ваше тело вместе со скафандром весит 45 кг. Вы бросаете бейсбольный мяч весом почти в полкило со скоростью 34 км/ч. Таким образом, вы ускоряете полукилограммовый мяч своей рукой так, что он набирает скорость 34 км/ч. Ваше тело реагирует в противоположном направлении, но весит в 100 раз больше мяча. Таким образом, оно принимает одну сотую ускорения мяча, или 0,34 км/ч.
Если вы хотите создать большую тягу от своего бейсбольного мяча, у вас есть два варианта: увеличить его массу или увеличить ускорение. Вы можете бросить мячик потяжелее или бросать мячи один за другим, либо бросить мяч быстрее. Но на этом все.
Ракетный двигатель, как правило, выбрасывает массу в форме газа под высоким давлением. Двигатель выбрасывает массу газа в одном направлении, чтобы получить реактивное движение в противоположном направлении. Масса идет от веса топлива, которое сгорает в двигателе ракеты. Процесс горения ускоряет массы топлива так, что они выходят из сопла ракеты на высокой скорости. Тот факт, что топливо превращается из твердого тела или жидкости в процессе сгорания, никак не меняет его массу. Если вы сожжете килограмм ракетного топлива, вы получите килограмм выхлопа в виде горячих газов на высокой скорости. Процесс сжигания ускоряет массу.
Содержание
- 1 Тяга
- 2 Твердотопливные ракеты: топливная смесь
- 3 Твердотопливные ракеты: конфигурации
- 4 Жидкотопливные ракеты
- 5 Будущее ракетных двигателей
Тяга
«Сила» ракетного двигателя называется тягой. Тяга измеряется в ньютонах в метрической системе и «фунтах тяги» в США (4,45 ньютона тяги эквивалентны одному фунту тяги). Фунт тяги — это количество тяги, необходимое для удержания 1-фунтового объекта (0,454 кг) неподвижным относительно силы тяжести Земли. Ускорение земной гравитации составляет 9,8 м/с².
Одной из забавных проблем ракет является то, что топливный вес, как правило, в 36 раз больше полезной нагрузки. Потому что помимо того, что двигателю нужно поднимать вес, этот же вес и способствует собственному подъему. Чтобы вывести крошечного человека в космос, нужна огромная ракета и много-много топлива.
Обычная скорость для химических ракет составляет от 8000 до 16 000 км/ч. Топливо горит около двух минут и вырабатывает 3,3 миллиона фунтов тяги на старте. Три основных двигателя космического шаттла, например, сжигают топливо в течение восьми минут и вырабатывают около 375 000 фунтов тяги каждый в процессе горения.
Далее мы рассмотрим топливные смеси твердотопливных ракет.
Твердотопливные ракеты: топливная смесь
Ракетные двигатели на твердом топливе — это первые двигатели, созданные человеком. Они были изобретены сотни лет назад в Китае и используются до сих пор. О красных бликах ракет поется в национальном гимне (написанном в начале 1800-х) — имеются в виду небольшие боевые ракеты на твердом топливе, используемые для доставки бомб или зажигательных устройств. Как видите, такие ракеты существуют уже давненько.
Идея, которая лежит в основе ракеты на твердом топливе, довольно проста. Вам нужно создать нечто, что будет быстро гореть, но не взрываться. Как вы знаете, порох не подходит. Оружейный порох на 75 % состоит из нитрата (селитры), 15 % угля и 10 % серы. В ракетном двигателе взрывы не нужны — нужно, чтобы топливо горело. Можно изменить смесь до 72 % нитрата, 24 % угля и 4 % серы. Вместо пороха вы получите ракетное топливо. Эта смесь будет быстро гореть, но не взорвется, если правильно ее загрузить. Вот типичная схема:
Слева вы видите ракету до зажигания. Твердое топливо отображается зеленым цветом. Оно в форме цилиндра с трубой, просверленной по центру. При зажигании горючее сгорает вдоль стенки трубы. По мере горения оно выгорает к корпусу, пока не сгорит полностью. В небольшой модели ракетного двигателя или крошечной ракетке процесс горения может длиться в течение секунды или того меньше. В большой ракете же топливо горит не менее двух минут.
Твердотопливные ракеты: конфигурации
Читая описание для современных твердотопливных ракет, часто можно найти вот такое:
«Ракетное топливо состоит из перхлората аммония (окислитель, 69,6 % по весу), алюминия (топливо, 16 %), оксида железа (катализатор, 0,4 %), полимера (связующей смеси, удерживающей топливо вместе, 12,04 %) и эпоксидный отверждающий агент (1,96 %). Перфорация выполнена в форме 11-конечной звезды в переднем сегменте двигателя и в форме дважды усеченного конуса в каждом из остальных сегментов, включая конечный. Такая конфигурация обеспечивает высокую тягу при розжиге, а затем уменьшает тягу примерно на треть спустя 50 секунд после старта, предотвращая перенапряжение аппарата во время максимального динамического давления». — NASA
Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:
Смысл в том, чтобы увеличить площадь поверхности канала, а значит, увеличить площадь выгорания, а значит — тягу. По мере того, как топливо сгорает, форма меняется к кругу. В случае с космическим шаттлом такая форма дает мощную начальную тягу и чуть послабее — в середине полета.
Твердотопливные двигатели обладают тремя важными преимуществами:
- простота
- низкая стоимость
- безопасность
Но есть и два недостатка:
- тягу невозможно контролировать
- после зажигания двигатель нельзя отключить или запустить повторно
Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.
Жидкотопливные ракеты
В 1926 году Роберт Годдард испытал первый двигатель на основе жидкого топлива. Его двигатель использовал бензин и жидкий кислород. Также он пытался решить и решил ряд фундаментальных проблем в конструкции ракетного двигателя, включая механизмы накачки, стратегии охлаждения и рулевые механизмы. Именно эти проблемы делают ракеты с жидким топливом такими сложными.
Основная идея проста. В большинстве жидкотопливных ракетных двигателях топливо и окислитель (например, бензин и жидкий кислород) закачиваются в камеру сгорания. Там они сгорают, чтобы создать поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет (от 8000 до 16 000 км/ч, как правило), а после выходят. Ниже вы найдете простую схему.
Эта схема не показывает фактические сложности обычного двигателя. К примеру, норальное топливо — это холодный жидкий газ вроде жидкого водорода или жидкого кислорода. Одной из крупных проблем такого двигателя является охлаждение камеры сгорания и сопла, поэтому холодная жидкость сначала циркулирует вокруг перегретых частей, чтобы охладить их. Насосы должны генерировать чрезвычайно высокое давление, чтобы преодолеть давление, которое создает в камере сгорания сжигаемое топливо. Вся эта подкачка и охлаждение делает ракетный двигатель больше похожим на неудачную попытку сантехнической самореализации. Давайте посмотрим на все виды комбинаций топлива, используемого в жидкотопливных ракетных двигателях:
- Жидкий водород и жидкий кислород (основные двигатели космических шаттлов).
- Бензин и жидкий кислород (первые ракеты Годдарда).
- Керосин и жидкий кислород (использовались на первой ступени «Сатурна-5» в программе «Аполлон»).
- Спирт и жидкий кислород (использовались в немецких ракетах V2).
- Четырехокись азота/монометилгидразин (использовались в двигателях «Кассини»).
Будущее ракетных двигателей
Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе — это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.
Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо — газообразный азот под давлением выбрасывается из резервуара через сопло.
Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать электромагнитные двигатели и ждать, что там еще выкинет Элон Маск со своим SpaceX.
Как работает реактивный двигатель?
Автор: Игорь Вильховский. Дата публикации: . Категория: Новости.
Наш технопарк превращает детей в настоящих инженеров. Здесь они проектируют и создают различные механизмы, приборы и системы. Инженеры всех времён создавали этот Мир и улучшали его, и мы надеемся, что наши кванторианцы продолжат это дело.
У инженерного ремесла множество направлений, но сегодня хочется вспомнить инженеров космической индустрии, так как совсем недавно был праздник День Космонавтики, в который мы отметили юбилей первого полёта человека в космос.
Огромным прорывом, поспособствовавшему этому событию стало создание первого реактивного двигателя – главной части космической ракеты. Он был изобретен инженерами Гансом фон Охайном и Фрэнком Уиттлом в 1930 году.
Главный советский инженер-конструктор Сергей Павлович Королёв успешно продолжил изучение реактивного движения и создал ракету «Восток-1», которая и отправила в космос первого человека – Юрия Алексеевича Гагарина.
А как же работает реактивный двигатель? Как ему удаётся двигать ракету даже в безвоздушном космическом пространстве? В этой статье ответы на эти вопросы!
Попробуйте поднять самого себя, взявшись за шнурки своих кроссовок. Получилось? Если Вы не нарушили законы физики, то вряд ли! Мы не сможем оторвать себя от земли, как бы не старались. Подлететь вверх мы можем только оттолкнувшись от пола и совершив прыжок. Но как же тогда ракета двигается в космосе? Космос – это пустота, вакуум. Там нет предметов, от которых можно оттолкнуться, чтобы получить импульс для движения. Получается, что ракета двигает сама себя, но как это получается?
Двигаться в вакууме ракете позволяет реактивный двигатель. И нет, ракета не двигает сама себя. Она всё-таки отталкивается. От чего? От собственного топлива!Чтобы понять, как это происходит, давайте вспомним третий закон Ньютона – «Действию всегда есть равное и противоположное противодействие».
Представьте, что Вы сидите на очень скользком льду. Встать и уйти невозможно. Оттолкнуться тоже никак. Вы сидите в одном положении и никак не можете двинуться с места. Что делать в такой ситуации? Нужно получить толчок извне. Да, можно позвонить другу и попросить, чтобы он кинул в Вас что-то тяжелое. Но этот способ травмоопасный и крайне неприятный. Правильнее будет вспомнить всё тот же третий закон Ньютона и получить импульс от противоположного импульса. А если по-простому – снимаем ботинок и кидаем его в сторону со всей силы. Таким образом, мы сообщаем ботинку импульс, с которым он полетит. При этом, ботинок тоже сообщает Вам импульс, направленный в противоположную сторону. Иными словами – мы толкаем ботинок, а ботинок толкает нас. Конечно, из-за разной массы, ботинок и Вы будете двигаться с разными скоростями, но всё-таки Вы начнете движение. Если бы Вы смогли метнуть ботинок с большей скоростью или если бы Вы метнули в сторону целый ящик ботинок, то Ваше движение было бы быстрее.
Именно этот закон реализуется в реактивном двигателе. Но там в сторону летят не ботинки, а поток газа.
Скорость молекул в воздухе – 1800 км/ч. А при нагревании до 2800 ̊С (такова температура газа в жидком реактивном двигателе), их скорость увеличивается в 3 раза. Выбрасывая вниз молекулы газа с такой скоростью, ракета получает и обратный импульс, направленный вверх.
Вот так и работает реактивный двигатель – в результате химической реакции топливо превращается в сильно разогретый газ, который струёй попадает в сопло двигателя. Сопло направляет эту струю в нужную сторону, и ракета начинает движение в противоположном направлении.
Реактивный двигатель был создан гениальными инженерами. А другой гениальный инженер использовал реактивное движение, чтобы открыть человечеству дорогу в космос.
В ДТ «Кванториум» много юных инженеров, и мы уверены, что кто-то из них обязательно создаст что-то не менее важное и гениальное!
——————————————————————————————————————————————————————
Парков Павел Андреевич — педагог Хай-Тек-квантума
Есть четыре основных Тяга – это сила, которая перемещает В ракетном двигателе топливо и Есть две основные категории ракетных двигателей; жидкостные ракеты и На этом слайде мы показываем изображение Saturn 1B. Экскурсии с гидом
Деятельность: Связанные сайты: |
Канадский город просит SpaceRyde прекратить громкие испытания ракетных двигателей
Сохраб Хагигат, генеральный директор SpaceRyde, во время торжественного открытия штаб-квартиры SpaceRyde в Конкорде, Онтарио, Канада, 21 июня 2022 года.
(Изображение предоставлено Коулом Берстоном/Блумбергом через Getty Images)
Канадский город с населением 13 000 человек требует, чтобы ракетный стартап прекратил там испытания своих двигателей.
Жители Трент-Хиллз, города Онтарио, примерно в двух часах езды к востоку от Торонто, просят частную ракетную компанию SpaceRyde прекратить испытания двигателей в регионе, и муниципалитет обратился за юридической консультацией, чтобы помочь добиться этого результата, по словам местных жителей. отчеты.
«Звук слышен за много миль и пугает любого, кто находится поблизости. Лошади могут бежать, а домашние животные встревожены. Дикая природа нарушена», — говорится в петиции (открывается в новой вкладке) на Change.org, которая была подписана. более чем на 700 человек по состоянию на вторник (8 ноября).
«Безопасность людей находится под угрозой, поскольку поразительный шум может заставить любого, кто едет верхом, на велосипеде, на мотоцикле, работает на лестнице или на крыше, на мгновение потерять концентрацию, когда они обрабатывают тревожный звук», — говорится в петиции.
Глава отдела маркетинга SpaceRyde Джен Шолтен отказалась комментировать петицию и отчеты, когда Space.com спросил ее в понедельник (7 ноября). «Многое произошло с момента его публикации», — сказал Шолтен, но не стал раскрывать подробности.
Связанный: Проект космодрома Новой Шотландии направлен на запуск экологически чистых ракет. тестирование на месте», — написала местная газета Trent Hills Now .
Муниципалитет утверждает, что SpaceRyde не раскрыла свои планы по тестированию двигателя в заявке на планирование размещения объекта на площадке, которая находится рядом с двумя основными дорогами округа. Обвинения не были доказаны в суде, и SpaceRyde заявила в отчетах , что испытания ракетного двигателя были охвачены дополнительным использованием собственности.
Сотрудник рядом с гибридной ракетой во время торжественного открытия штаб-квартиры SpaceRyde в Конкорде, Онтарио, Канада, 21 июня 2022 года. (Изображение предоставлено Коулом Берстоном/Bloomberg через Getty Images) Комментарий к Trent Hills Now в сентябре, соучредитель SpaceRyde Сохраб Хагигхат отметил, что шум в 100 децибел при испытании двигателя является коротким, нечастым и эквивалентен шуму большого грузовика, кратковременно раскручивающего двигатель на дороге.
SpaceRyde всегда уведомляет местных жителей перед проведением испытаний, сказал Хагигхат и добавил, что один местный житель сказал ему, что этот шум «это звук прогресса. Это звук Канады, которая однажды отправится в космос (с) на собственной ракете».
SpaceRyde открыла объект площадью 2300 квадратных метров в Конкорде в июне и пригласила представителей СМИ, а также канадского астронавта Криса Хэдфилда. По сообщениям СМИ, в частной компании работает около 30 сотрудников, и она была основана в 2018 году. Ее целью является создание трехступенчатой ракеты, которая будет летать в стратосферу на борту воздушного шара перед запуском двигателей.
Город спорит со SpaceRyde, в то время как Канада быстро расширяет свою ракетную промышленность. Правительство Канады рассматривает возможность создания космодрома в Новой Шотландии, который планирует начать суборбитальные запуски в следующем году. Несколько компаний в районе Торонто наращивают производство ракетной техники после нескольких лет или десятилетий изготовления деталей для американских компаний.
Малая космическая индустрия в Канаде также растет по мере того, как в сообществе закрепляются более крупные проекты, такие как обязательство Канадского космического агентства отправить астронавтов и оборудование на лунные миссии, такие как Artemis 2 НАСА, целью которого является отправка людей в путешествие вокруг Земли. луна в 2024 году.
Элизабет Хауэлл — соавтор книги « Почему я выше ?» (ECW Press, 2022; совместно с канадским астронавтом Дэйвом Уильямсом), книга о космической медицине. Подпишитесь на нее в Твиттере @howellspace (открывается в новой вкладке) . Следуйте за нами в Твиттере @Spacedotcom (открывается в новой вкладке) или Facebook (открывается в новой вкладке) .
Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].
Элизабет Хауэлл, доктор философии, является штатным корреспондентом на канале космических полетов с 2022 года. Она была автором для Space.com (открывается в новой вкладке) в течение 10 лет до этого, с 2012 года. Репортажи Элизабет включают эксклюзив для Office вице-президента Соединенных Штатов, несколько раз выступая с Международной космической станцией, наблюдая за пятью запусками человека в космос на двух континентах, работая в скафандре и участвуя в имитации полета на Марс.