Трехфазное подключение звезда: Звезда или треугольник. Оптимальное подключение асинхронного электродвигателя | RuAut

Содержание

Звезда или треугольник. Оптимальное подключение асинхронного электродвигателя | RuAut


Двигатели асинхронного типа имеют целый набор безусловных достоинств. Среди плюсов асинхронных двигателей в первую очередь хочется назвать высокую производительность и надежность их эксплуатации, совсем небольшую стоимость и неприхотливость ремонта и обслуживания двигателя, а также способность переносить достаточно высокие перегрузки механического типа. Все эти достоинства, которыми обладают асинхронные двигатели, обусловлена тем, что данный тип двигателей имеет очень простую конструкцию. Но, не смотря на большое число достоинств, асинхронным двигателям присущи и их определенные отрицательные моменты.


В практической работе принято использовать два основных способа подключения трёхфазных электродвигателей к электросети. Эти способы подключения носят названия: «подключение методом звезды» и «подключение методом треугольника».


Когда выполняется соединение трёхфазного электродвигателя по типу подключения «звезда», тогда соединение концов обмоток статора электродвигателя происходит в одной точке. При этом трехфазное напряжение подают на начала обмоток. Ниже, на рисунке 1, наглядно проиллюстрирована схема подключения асинхронного двигателя «звездой».


Когда выполняется соединение трёхфазного электродвигателя по типу подключения «треугольник», тогда обмотки статора электродвигателя присоединяются последовательно друг за другом. При этом начало последующей обмотки соединяется с концом предыдущей обмотки и так далее. Ниже, на рисунке 2, наглядно проиллюстрирована схема подключения асинхронного двигателя «треугольником».




Если не вдаваться в теоретические и технические основы электротехники, то можно принять на веру тот факт, что работа тех электродвигателей, у которых обмотки подключены по схеме «звезда», является более мягкой и плавной, чем у электродвигателей, обмотки которых соединены по схеме «треугольник». Но тут же стоит обратить внимание на ту особенность, что электродвигатели, обмотки которых подключены по схеме «звезда», не способны развить полную мощность, заявленную в паспортных характеристиках. В том случае, если соединение обмоток выполнено по схеме «треугольник», то электродвигатель работает на максимальную мощность, которая заявлена в техническом паспорте, но при этом имеют место быть очень высокие значения пусковых токов. Если произвести сравнение по мощности, то электродвигатели, чьи обмотки будут соединены по схеме «треугольник», способны выдавать мощность в полтора раза выше, чем те электродвигатели, обмотки которых подключены по схеме «звезда».


Основываясь на всем вышеописанном, для того, чтобы снизить токи при запуске, целесообразно применять подключение обмоток по комбинированной схеме «треугольник-звезда». Особенно такой тип подключения актуален для электродвигателей, обладающих большей мощностью. Таким образом, в связи с соединением по схеме «треугольник- звезда» изначально запуск выполняется по схеме «звезда», а после того, как электродвигатель «набрал обороты», выполняется переключение в автоматическом режиме по схеме «треугольник».


Схема управления электродвигателем представлена на рисунке 3.



Рис. 3 Схема управления 


Еще один вариант схемы управления электродвигателем заключается в следующем (рис. 4).



Рис. 4 Схема управления двигателем


На контакт NC (нормально закрытый) реле времени K1, а также на контакт NC реле K2, в цепи катушки пускателя КЗ, подаётся напряжение питания.


После того, как произойдет включение пускателя КЗ, нормально закрытыми контактами КЗ расцепляются цепи катушки пускателя K2 (запрет случайного включения). Контакт КЗ в цепи питания катушки пускателя K1 замыкается.


Когда запускается магнитный пускатель K1, в цепи питания его катушки замыкаются контакты K1. Реле времени включается в то же самое время, контакт этого реле K1 в цепи катушки пускателя КЗ размыкается. А в цепи катушки пускателя K2 – замыкается.


При отключении обмотки пускателя КЗ, замкнётся контакт КЗ в цепи катушки пускателя K2. После того, как пускатель K2 включится, он размыкает своими контактами K2 цепь питания катушки пускателя КЗ.


Трёхфазное напряжение питания подаётся на начало каждой из обмоток W1, U1 и V1 с помощью силовых контактов пускателя K1. Когда срабатывает магнитный пускатель КЗ, тогда при помощи его контактов КЗ выполняется замыкание, посредством которого между собой соединяются концы каждой из обмоток электродвигателя W2, V2 и U2. Таким образом, выполняется подключение обмоток электродвигателя по схеме соединения «звезда».


Реле времени, объединенное с магнитным пускателем K1, сработает спустя определенное время,. При этом происходит отключение магнитного пускателя КЗ и одновременное включение магнитного пускателя K2. Таким образом силовые контакты пускателя K2 замкнутся и напряжение питания будет подано на концы каждой из обмоток U2, W2 и V2 электродвигателя. Иными словами, электродвигатель включается по схеме подключения «треугольник».


Для того, чтобы электродвигатель запустить по схеме соединения «треугольник-звезда», различные изготовители производят специальные пусковые реле. Данные реле могут носить разнообразные названия, например, реле «старт-дельта» или «пусковое реле времени», а также и некоторые другие. Но назначение всех этих реле заключается в одном и том же.


Типовая схема, выполненная с реле времени, предназначенном для запуска, то есть реле «треугольник-звезда», для осуществления управления запуска трехфазного электродвигателя асинхронного типа представлена на рисунке 5.



Рис.5 Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя.


Итак, подытожим все вышеописанное. Для того, чтобы понизить пусковые токи осуществлять запуск электродвигателя требуется в определенной последовательности, а именно:

  1. сперва электродвигатель запускают на пониженных оборотах соединённым по схеме «звезда»;
  2. затем электродвигатель соединяют по схеме «треугольник».


Первоначальный запуск по схеме «треугольник» создаст максимальный момент, а последующее соединение по схеме «звезда» (для которой в 2 раза меньше пусковой момент) с продолжением работы в номинальном режиме, когда двигатель «набрал обороты», произойдёт переключение на схему соединения «треугольник» в автоматическом режиме. Но не стоит забывать о том, какая нагрузка создается перед запуском на валу, так как вращающий момент при соединении по схеме «звезда» ослаблен. По этой причине маловероятно, что данный метод запуска будет приемлем для электродвигателей с высокой нагрузкой, так как они в таком случае могут потерять свою работоспособность.

Звезда и треугольник принцип подключения. Особенности и работа

Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей (звезда и треугольник).

Схемы

Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току.  Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах — звезда и треугольник.

Схема звезды

Соединение различных обмоток по схеме звезды предполагает их подключение в одной точке, которая называется нулевой (нейтральной), и имеет обозначение на схемах «О», либо х, у, z. Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение имеется. Если такое соединение есть, то такая система считается 4-проводной, а если нет такого соединения, то 3-проводной.

Схема треугольника

При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на треугольник, и соединение обмоток в ней идет последовательно друг с другом. Нужно отметить отличие от схемы звезды в том, что в схеме треугольника система бывает только 3-проводной, так как общая точка отсутствует.

В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.

Фазные и линейные величины

В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные. Фазное напряжение – это его величина между концом и началом фазы приемника. Фазный ток протекает в одной фазе приемника.

При применении схемы звезды фазными напряжениями являются Ua, Ub, Uc, а фазными токами являются I a, I b, I c. При применении схемы треугольника для обмоток нагрузки или генератора фазные напряжения — U, U, U, фазные токи – I ac, I , I .

Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.

В случае схемы звезды линейные токи равны фазным, а линейные напряжения равны U ab, Ubc, U ca. В схеме треугольника получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны I a, I b, I c.

Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.

Особенности схем

Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.

Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать. При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов. Электродвигатель будет работать с малой скоростью, которая меньше номинальной.

Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.

Для этого можно применить некоторые методы:
  • Подключить на запуск электродвигателя реостат, дроссель, либо трансформатор.
  • Изменить вид соединения обмоток ротора электродвигателя.

В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность. Здесь работает принцип переключения обмоток электромотора на такие схемы, как звезда и треугольник. То есть, при запуске мотора его обмотки имеют соединение «звезда», после набора эксплуатационных оборотов, схема соединения изменяется на «треугольник». Этот процесс переключения в промышленных условиях научились автоматизировать.

В электромоторах целесообразно применение сразу двух схем — звезда и треугольник. К нулевой точке необходимо подключить нейтраль источника питания, так как во время использования таких схем возникает повышенная вероятность перекоса фазных амплитуд. Нейтраль источника компенсирует эту асимметрию, которая возникает вследствие разных индуктивных сопротивлений обмоток статора.

Достоинства схем

Соединение по схеме звезды имеются важные преимущества:
  • Плавный пуск электрического мотора.
  • Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.
  • Электродвигатель будет иметь нормальный рабочий режим при различных ситуациях: при высоких кратковременных перегрузках, при длительных незначительных перегрузках.
  • При эксплуатации корпус электродвигателя не перегреется.

Основным достоинством схемы треугольника является получение от электродвигателя наибольшей возможной мощности работы. Целесообразно поддерживать режимы эксплуатации по паспорту двигателя. При исследовании электромоторов со схемой треугольника выяснилось, что его мощность повышается в 3 раза, по сравнению со схемой звезды.

При рассмотрении генераторов, схемы – звезда и треугольник по параметрам аналогичны при функционировании электродвигателей. Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако, при повышении напряжения снижается сила тока, так как по закону Ома эти параметры обратно пропорциональны друг другу.

Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. В современных мощных электромоторах при запуске схемы – звезда и треугольник переключаются автоматически, так как это позволяет снизить нагрузку по току, возникающей при пуске мотора.

Процессы, происходящие при изменении схемы звезда и треугольник в разных случаях. Здесь, изменение схемы — имеется ввиду переключение на щитах и в клеммных коробках электрических устройств, при условии, что имеются выводы обмоток.

Обмотки генератора и трансформатора

При переходе со звезды в треугольник напряжение уменьшается с 380 до 220 вольт, мощность остается прежней, так как фазное напряжение не изменяется, хотя линейный ток увеличивается в 1,73 раза.

При обратном переключении возникают обратные явления: линейное напряжение увеличивается с 220 до 380 вольт, а фазные токи не изменяются, однако линейные токи снижаются в 1,73 раза. Поэтому можно сделать вывод, что если есть вывод всех концов обмоток, то вторичные обмотки трансформатора и генераторы можно применять на два типа напряжения, которые отличаются в 1,73 раза.

Лампы освещения

При переходе со звезды в треугольник лампы сгорят. Если переключение сделать обратное, при условии, что лампы при треугольнике горели нормально, то лампы будут гореть тусклым светом. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и распределяется равномерно между фазами. Такое подключение применяется в театральных люстрах.

Похожие темы:

звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.

В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:

— зачем шесть контактов в двигателе?

— а почему контактов всего три?

— что такое «звезда» и «треугольник»?

— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?

— а как измерить ток в обмотках?

— что такое пускатель?

и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.

Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,

2. Трехфазная сеть 220 В (обычно используется на кораблях),

3. Трехфазная сеть 220В/380В,

4. Трехфазная сеть 380В/660В.

Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?

Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.

В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.

Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.


Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):


Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).

Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.

2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):

Двигатель для однофазной сети 220В

(~ 1, 220В)

Двигатель для трехфазной сети

220В/380В (220/380, Δ / Y)

Двигатель для трехфазной сети 380В

(~ 3, Y, 380В)

Двигатель для трехфазной сети

(380В / 660В (Δ / Y, 380В / 660В)


3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.

4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.

Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).

Есть 2 способа подключения электродвигателя:

— использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.

Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).

Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

— использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.

Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита

(2) Пружина

(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)

(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:

При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.

Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса

Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.

В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).

Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

— регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),

— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),

— при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,

дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.

На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.


Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).


Технический директор

ООО «Насосы Ампика»

Моисеев Юрий.

Соединение звездой и треугольником — схема и разница трехфазного соеднинения

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Реверсивная схема двигателя 380 на 220 Вольт

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

  • Устойчивый и длительный режим безостановочной работы двигателя;
  • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
  • Максимальная плавность пуска электрического привода;
  • Возможность воздействия кратковременной перегрузки;
  • В процессе эксплуатации корпус оборудования не перегревается.

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Соединение «треугольником» и его преимущества

Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.

При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

Основные преимущества применения схемы «треугольник»:

  • Увеличение до максимального значения мощности электрооборудования;
  • Использование пускового реостата;
  • Повышенный вращающийся момент;
  • Большие тяговые усилия.

Недостатки:

  • Повышенный ток пуска;
  • При длительной работе двигатель сильно греется.

Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Тип соединения «звезда-треугольник»

В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

Двигатели с повышенной мощностью обладают большими пусковыми токами, и как следствие при пуске часто вызывают перегорание предохранителей, отключению автоматов. Для снижения линейного напряжения в обмотках статора применяют автотрансформаторы, универсальные дросселя, пусковые реостаты или соединение типа «звезда».

Схемы подключения звездой и треугольником

В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

Основные преимущества комбинации:

  • Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
  • Возможность создания двух уровней мощности.

Блиц-советы

  1. В момент пуска электродвигателя, его ток пуска в 7 раз больше рабочего тока.
  2. Мощность в 1,5 раза больше при соединении обмоток методом «треугольника».
  3. Для создания плавного пуска и защиты от перегрузок двигателя, часто используются частотные провода.
  4. При использовании метода соединения «звездой», особое внимание уделяют отсутствию «перекоса фаза», иначе оборудование может выйти из строя.
  5. Линейные и фазные напряжения при соединении «треугольник» – равны между собой, как и линейные и фазные токи в соединении «звездой».
  6. Для подключения двигателя к бытовой сети зачастую применяют фазосдвигающий конденсатор.

Подключение электродвигателя по схеме звезда и треугольник

Схемы подключения электродвигателя. Звезда, треугольник, звезда — треугольник.

Асинхронные двигатели, имея ряд таких неоспоримых достоинств, как надежность в эксплуатации, высокая производительность, способность выдерживать большие механические перегрузки, неприхотливость и невысокая стоимость обслуживания и ремонта, обусловленные простотой конструкции, имеют, конечно и свои определенные недостатки.

На практике применяются основные способы подключения к сети трёхфазных электродвигателей: «подключение звездой» и «подключение треугольником».

При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, соединение происходят в одной точке, а на начала обмоток подаётся трехфазное напряжение (рис 1).

При соединении трёхфазного электродвигателя по схеме подключения «треугольником» обмотки статора электродвигателя соединяются последовательно таким образом что конец одной обмотки соединяется началом следующей и так далее (рис 2).

Не вдаваясь в технические и теоретические основы электротехники известно, что электродвигатели у которого обмотки, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенными обмотками треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность. При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.

 В связи с этим для снижения пусковых токов целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда — треугольник; первоначально запуск осуществляется по схеме «звезда», после этого (когда электродвигатель «набрал обороты»), происходит автоматическое переключение по схеме «треугольник».

 Схема управления :

Еще вариант схемы управления двигателем

 Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.

 После включения пускателя К3, своими нормально-замкнутыми контактами размыкает цепи катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.

 При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.

 Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. После включение пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.

(Начало обмоток статора: U1; V1; W1. Концы обмоток: U2; V2; W2. На клеммной доске шпильки начала и концов обмоток расположены в строгой последовательности: W2; U2; V2; под ними расположены: U1; V1; W1. При подключении двигателя в «треугольник» шпильки соединяются перемычками: W2-U1; U2-V1; V2-W1.)

На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.

 Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

Для запуска двигателей по схеме звезда-треугольник разными производителями выпускаются так называемые пусковые реле, название они могут иметь разные «Пусковые реле времени» , реле «старт-дельта» и др., но назначение у них одно и тоже:

РВП-3, ВЛ-32М1, D6DS (Австрия) , ВЛ-163 (Украина), CRM-2T  (Чехия), TRS2D (Чехия),  1SVR630210R3300 (ABB), 80 series (Finder) и другие.

Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя:

Вывод:  Для снижения пусковых токов запускать двигатель необходимо в следующей последовательности: сначала включенным по схеме «звезда» на пониженных оборотах, далее переключаться на «треугольник».
Запуск сначала треугольником создает максимальный момент, а уже переключение на звезду (пусковой момент в 2 раза меньше) с дальнейшей работой в номинальном режиме, когда электродвигатель «набрал обороты», происходит автоматическое переключение на схему треугольник, стоит учитывать какая нагрузка на валу перед запуском, ведь вращающий момент при звезде ослаблен, поэтому такой способ запуска вряд ли подойдет для очень загруженных двигателей, может выйти из строя.

Звезда и треугольник. Подключение двигателей.

Произошёл тут такой случай. Принёс человек в ремонт новый двигатель, который проработал у него 10 секунд и задымил. Двигатель он подключил треугольником в обычную трехфазную сеть, а на шильдике двигателя есть схема, на которой написано: треугольник — 230 В. звезда — 400 В. В общем, подключил он неправильно, потому двигатель и сгорел.


Для тех, кто не понимает, почему нельзя делать так, как сделал сделал тот товарищ, спаливший двигатель, предназначена эта статья. 

Однофазные, двухфазные и трёхфазные электрические сети

В мире распространение имеют однофазные и трёхфазные электрические сети.

Однофазный ток представляет собой синусоиду:

Полное амплитудное напряжение превышает фазное, отличающееся от него в √2/2 раз, т.е.
311.1 х √2/2 = 220,
325.3 х √2/2 = 230,
169.7 х √2/2 = 120.

В трёхфазной сети фазы сдвинуты относительно друг друга на 120 градусов. Линейное напряжение выше фазного в √3 раз, т.е. примерно в 1.73 раза, следовательно,
220 х √3 = 380,
230 x √3 = 400,
380 x √3 = 660,
400 x √3 = 690,
120 x √3 = 208,
277 х √3 = 480.

Линейное напряжение трёхфазной сети — это межфазное напряжение,
именно оно обозначается на шильдиках двигателей. Фазное напряжение
(между фазой и нейтралью) на шильдиках не обозначается.

Одновременно с этим, условно говоря, вы можете считать, что на
шильдике обозначено фазное напряжение, но только в том случае, если
собираетесь подключать двигатель только к одной фазе через конденсатор.
 

Помимо этого, в США и Канаде также распространены двухфазные сети (сети с разделённой фазой или трёхпроводные однофазные сети), которые
позволяют подключать мощные бытовые приборы и приборы, выпущенные под европейский
стандарт 230 В. По сути, использование таких систем обосновано тем, что в США обычно не ведут по столбам низкое напряжение как у нас, а устанавливают понижающие трансформаторы непосредственно в местах отвода потребителям. Т.е. прямо на столбах они вешают трансформаторы, понижая напряжение с условных 7 кВ до положенных по стандарту 120 В. Но вместо того, чтобы просто понизить напряжение до 120 В, они используют трансформатор на 240 В со средней точкой. Напряжения на крайних выводах вторичной обмотки трансформатора, возникающие в каждый момент его работы, сдвинуты по фазе на 180 градусов.

Т.е. они получают таким образом как бы две фазы 120 В, смещённые относительно друг друга на 180 градусов.

Соответственно, у них там применяются специальные розетки на три контакта (две фазы и нейтраль) и есть разные варианты подключения мощных бытовых приборов, например, кондиционеров, которые можно подключать к 120 В, а можно к 240 В при наличии технической возможности.

Не следует путать такие двухфазные сети с существовавшими в начале XX века в США двухфазными сетями, где фазы были смещены на 90 градусов, к которым можно было напрямую подключать двигатели с двумя обмотками (как у современных сервомоторов).


Все варианты однофазных и трёхфазных сетей, применяющихся в Америке, выглядят следующим образом:


Подключение двигателей

Вот всем известные схемы подключения треугольником (D) и звездой (Y):

Всего
с двигателя выходит 6 проводов: это начала трёх обмоток и их концы.
Места соединений обмоток на схеме выше обозначены точками a, b, c и 0
(последний — только для звезды). В клеммной коробке шесть указанных
клемм располагают в два ряда по три клеммы, причём клеммы начала и
концов обмоток не находятся параллельно друг другу, а расположены так,
чтобы было удобнее подключать треугольником (т.е. соединять начала одних
обмоток с концами других):

Некоторые
граждане иногда подключают нейтральный провод к нулевой точке при
подключении двигателя звездой. На самом деле ничего хорошего от этого
нет, делать так не нужно.

Совершенно
неважно как вы подключаете двигатель: звездой или треугольником. Важно
только то, какое напряжение вы подаёте на обмотки двигателя
. Будет ли
это напряжение получаться как межфазное (треугольник) или как фазное
(между фазой и нулевой точкой — звезда) — двигателю это совершенно
неважно.

Если у вас есть двигатель с номинальным напряжением обмотки 220 В и есть две разные трёхфазные сети, у одной из которых линейное напряжение
380 В (220 В на фазу), а у другой — 220 В (127 В на фазу), то к первой
вы можете подключать двигатель звездой, а ко второй — треугольником,
разницы для  двигателя не будет никакой, отличаться будут лишь токи,
протекающие в проводниках на линии, ведущей к двигателю. 

Выглядит всё это так, например, для двигателя мощностью 1.1 кВт с номинальным напряжением обмотки 220 В. Для тех, кто в танке: РИСУНОК СЛЕВА — это для РОССИИ, где 380 В 50 Гц, т.е. 220В на фазу,  а справа — это для стран, где трёхфазное напряжение 220 В, 50 Гц (или 127 В на фазу):

Для такого двигателя на шильдике будет написано: D/Y 220V / 380V, 4.9А / 2.8А. Соответственно, в этих двух случаях отличаются только токи в проводниках, ведущих к двигателю (именно они указаны на шильдике, в то время как ток на обмотке будет одинаковый, что видно на рисунке сверху). Следовательно, для России (линейное напряжение 400 В) для такого двигателя надо использовать схему подключения звезда.


Как видно по рисунку выше, при подключении к сети с большим напряжением токи в проводниках ниже (2.8A vs. 4.85A), поэтому, в случае использования преобразователя частоты переменного тока (ПЧ) для управления двигателем D/Y 230V / 400V, лучше применять схему подключения звезда и выставлять в настройка ПЧ напряжение двигателя 400В.

Теперь логичный вопрос:

если двигателю нет разницы по какой схеме он будет подключен, а важно лишь напряжение на обмотках, то зачем вообще делать двигатели с разным номинальным напряжением на этих самых обмотках?

 
Ответ такой: двигатель должен соответствовать требованиям конкретной ситуации, а требоваться может следующее:

1. ВОЗМОЖНОСТЬ ПОДКЛЮЧЕНИЯ К ТРЁХФАЗНОЙ СЕТИ
В трёхфазную сеть можно подключить двигатель, номинальное напряжение
обмоток которого равно либо фазному напряжению сети (звездой), либо
линейному (треугольник)
.

2. ВОЗМОЖНОСТЬ ВКЛЮЧЕНИЯ В ОДНОФАЗНУЮ СЕТЬ
Для правильного подключения двигателя в однофазную сеть (через
конденсатор) требуется, чтобы номинальное напряжение обмотки двигателя
было не больше фазного напряжения сети.

3. ПЕРЕКЛЮЧЕНИЕ ЗВЕЗДА-ТРЕУГОЛЬНИК
Для двигателей со свободной нагрузкой на валу наиболее
дешевым способом плавного пуска при подключении в трёхфазную сеть
является пуск «звездой» с последующим переключением на «треугольник». Номинальное напряжение обмотки должно быть равно линейному напряжению сети. Т.е. сначала подается более низкое фазное напряжение (звезда — между фазой и нулевой точкой), а затем происходит переключение на треугольник, т.е. начинает подаваться межфазное напряжение, соответствующее номиналу двигателя.

Если составить таблицу по всем трём пунктам для трёхфазной сети 400В 50Гц (Россия, Европа, Китай), то будет она выглядеть так:

Аналогичная таблица для сети 208В 60Гц (США, Тайвань, Япония):

В итоге производители условно делят все двигатели на две категории:

1. Маломощные (менее 5 кВт), преимущественного бытового назначения, для которых может возникнуть потребность подключения к однофазной сети (не у каждого дома есть трёхфазная розетка). В России это двигатели D230V / Y400V.

2. Двигатели мощностью более 5 кВт, которые не имеют бытового назначения, а потому для них нет потребности подключения в однофазную сеть. Одновременно с этим, для них может возникнуть потребность переключения со звезды на треугольник при пуске. В России такими двигателями являются D400V / Y690V. Кроме того, такие двигатели можно подключать к промышленным сетям 690В, организация которой позволит экономить на прокладке кабеля, поскольку, как уже было показано выше, токи в проводниках будут ниже для сетей с более высоким напряжением.

Двигатели малой мощности 

D 230V / Y 400V


Если двигатель имеет небольшую мощность (до 4 — 5 кВт), то его обычно делают с расчётом на возможность подключения к однофазной сети. Т.е. в трёхфазную сеть его подключают звездой, а в однофазную — треугольником через фазосдвигающий конденсатор. Для последнего случая также может использоваться пусковой конденсатор (отключается сразу после запуска). Выглядит это так:

Для того, чтобы двигатель можно было так подключить в однофазную сеть, его номинальное напряжение каждой обмотки должно быть равно фазному напряжению сети. Это значит, что если двигатель планируется использовать в России или Европе, то номинальное напряжение обмотки должно быть равно 230 В. В таком случае этот двигатель можно будет использовать как в трёхфазной сети с линейным напряжением 400 В (подключение звезда), так и в однофазной сети 230 В (подключение треугольником через конденсатор). Это те самые двигатели, где на шильдике написано напряжение D 220V / Y 380V. 

Соответственно, если нужно такой двигатель использовать в стране с более низким линейным напряжением, например, в США (где линейное напряжение 208 В, а фазное — 120 В), то по-нормальному подключить такой двигатель в их однофазную сеть через конденсатор не получится, но можно подключить в их двухфазную сеть 240 В, если таковая имеется.

D 115V / Y 208-230V

Одновременно с этим, маломощные двигатели, предназначенные для стран, где стандартное напряжение ниже, чем у нас, будут подключаться как D 127V / Y 220V. Однако,  двигатели с такой надписью на шильдике вы вряд ли найдёте, потому что 127 В, 50 Гц — это очень малораспространённое напряжение в мире (см. тут). Поэтому, скорее всего, вам встретится двигатель с шильдиком, где будет указано напряжение D 115V / Y 208-230V.

Подключить такой двигатель к стандартной российской трёхфазной сети (все три фазы) можно только через преобразователь частоты переменного тока, поскольку на них есть возможность переключения линейного напряжения на выходе: 230 / 400 В.
В однофазную сеть можно подключить звездой через конденсатор. Тогда напряжение, подаваемое на каждое обмотку, будет составлять половину фазного напряжения сети (230 В / 2 = 115 В). Выглядит это вот так:

Двигатели мощности более 5 кВт 

D 400V / Y 690V

Для двигателей мощнее 5 кВт обычно не предусматривают возможность подключения в однофазную сеть, т.е. номинальное напряжение обмоток делают такое, которое соответствует линейному напряжению. Т.е. штатной схемой подключения таких двигателей в трёхфазную сеть является треугольник. В России и Европе это двигатели с номинальным напряжением обмоток 400В, т.е. где на шильдике написано D 400V / Y 690V.

Для определённых задач, где на валу двигателя находится свободная нагрузка (системы вентиляции, осевые насосы), ну, и вообще те задачи, где возможно регулирование скорости вращения вала только лишь напряжением (трансформатором), часто используют схему подключения «звезда» при старте с последующим переключением на «треугольник». Т.е. при старте на обмотку подаётся заниженное напряжение 230В вместо номинальных 400В, а затем происходит переключение на штатный режим (т.е. на треугольник). Из-за свободной нагрузки на валу момент вращения при старте на низком напряжении также будет ниже, т.е. пусковой ток будет не столь высок, как при старте на номинальном напряжении. Поэтому такой пуск двигателя называют «щадящим».

Следует помнить, что для нагрузок, требующих большого момента при запуске, подобный режим приведет напротив, к возрастанию тока в обмотках и последующим неприятным событиям.

Кроме того, надо иметь ввиду, что подключение двигателей даже со свободной нагрузкой на валу звездой для «щадящего старта» вовсе не означает, что если по такой схеме постоянно эксплуатировать двигатель (не переходя на треугольник), то такой режим станет «щадящим» для него. Низкий момент при старте ещё не означает, что заниженное напряжение годится для его нормальной работы, поскольку сам двигатель (со своими номинальными характеристиками) обычно как раз и подбирается под конкретную нагрузку. Поэтому постоянная эксплуатация двигателей на напряжении ниже номинального иногда приводит к их выходу из строя. Чтобы не было неприятностей двигатель всегда надо эксплуатировать на номинальном напряжении, а если требуется снизить обороты вращения вала, то тогда нужно использовать редукторы или преобразователи частоты переменного тока, а не пытаться решить вопрос самым дешёвым способом. К слову сказать, частотник тоже меняет не только частоту тока, но и напряжение, однако, он это делает с умом.

D 220V / Y 440V, D 277V / Y 480

Двигатели мощностью выше 5 кВт, изготовленные в США, будут иметь номинальное напряжение обмотки 277 В, поскольку там распространены промышленные сети 480 В, ну а в Тайване аналогичные двигатели будут иметь номинал в 220 В. К российской трёхфазной сети 400 В подключаются они звездой, а к российской однофазной сети через конденсатор — треугольником. Касательно величин напряжения, есть двигатели, где более подробно расписано подключение для сетей 50 Гц и 60 Гц, например вот так:

Соединение звездой и треугольником обмоток

Здравствуйте, уважаемые гости и посетители сайта «Заметки электрика».

В прошлой статье я рассказал Вам про применение асинхронного двигателя и его устройство, а также подробно познакомились с двумя разновидностями асинхронного двигателя.

Сегодня я расскажу Вам про соединение звездой и треугольником обмоток асинхронных двигателей, т.к. это один из распространенных вопросов, который мне задают на личную почту.

Вспомним вкратце принцип действия асинхронного двигателя. Питание такого двигателя осуществляется от сети трехфазного переменного напряжения. В статоре имеются 3 обмотки, которые сдвинуты относительно друг друга на 120 электрических градуса. Это сделано с целью создания вращающегося магнитного поля.

Обозначаются вывода обмоток статора асинхронных двигателей следующим образом:

С1, С2, С3 – начала обмоток, С4, С5, С6 – конец обмоток. Но сейчас все чаще применяется новая маркировка выводов по ГОСТу 26772-85. U1, V1, W1 — начала обмоток, U2, V2, W2 – конец обмоток.

Выводы фазных обмоток асинхронного двигателя выводятся на клеммник или колодку и располагаются таким образом, чтобы соединения звездой или треугольником было удобно выполнить без перекрещивания с помощью специальных перемычек.

Клеммник, его еще называют «борно», чаще всего устанавливается сверху, реже – сбоку. Некоторые клеммники можно разворачивать на 180 градусов, для удобства подводки питающих кабелей.

Всего  на клеммник может быть выведено 3 или 6 выводов фазных обмоток статора.

Разберем каждый случай отдельно.

Пример

Если в клеммник выведено 6 выводов обмоток статора, то асинхронный двигатель можно подключить в сеть на 2 разных уровня напряжения, отличающихся на величину в 1,73 раза (√3).

Для наглядности рассмотрим пример. Допустим, у нас имеется электродвигатель, на табличке которого указано напряжение 220/380 (В).

Что это значит?

А это значит, что если в сети уровень линейного напряжения составляет 380 (В), то обмотки статора необходимо соединить в схему звезды.

 

Соединение звездой

Соединение звездой фазных обмоток статора асинхронного двигателя выполняется следующим образом. Концы всех трех обмоток нужно соединить в одну точку с помощью специальной перемычки, о которой я говорил чуть выше. А на их начала подать трехфазное напряжение сети.

Из рисунка выше видно, что напряжение на фазной обмотке составляет 220 (В), а линейное напряжение между двумя фазными обмотками составляет 380 (В).

На клеммнике соединение звездой обмоток будет выглядеть следующим образом.

Соединение треугольником

Вернемся к нашему примеру.

Если в сети уровень линейного напряжения составляет 220 (В), то обмотки статора необходимо соединить в схему треугольника.

Соединение треугольником фазных обмоток статора асинхронного двигателя выполняется следующим образом.

  • конец обмотки фазы «А» C4 (U2) необходимо соединить с началом обмотки фазы «В» С2 (V1)
  • конец обмотки фазы «В» С5 (V2)  необходимо соединить с началом обмотки фазы «С» С3 (W1)
  • конец обмотки фазы «С» С6 (W2)  необходимо соединить с началом обмотки фазы «А» С1 (U1)

Места их соединения подключаются к соответствующим фазам питающего трехфазного напряжения.

Из рисунка видно, что при линейном напряжении сети 220 (В) напряжение на фазной обмотке составляет тоже 220 (В).

На клеммнике при соединении треугольником обмоток статора асинхронного двигателя специальные перемычки нужно установить следующим образом:

В нашем примере при соединении звездой и треугольником напряжение на каждой фазной обмотке асинхронного двигателя будет 220 (В).

Частный случай

Бывают ситуации, когда на клеммник асинхронного двигателя выведено всего 3 вывода, вместо 6. В этом случае соединение звездой или треугольником выполняется внутри двигателя на лобной (торцевой) его части.

Такой асинхронный двигатель можно включать в сеть только на одно напряжение, указанное на табличке с техническими данными.

В нашем примере обмотки статора асинхронного двигателя соединяются по схеме звезда и его можно включать в сеть напряжением 380 (В).

Выводы

В конце данной статьи про соединение звездой и треугольником сделаю вывод, основанный на опыте эксплуатации электродвигателей.

При соединении звездой обмоток асинхронного электродвигателя наблюдается более мягкий запуск и плавная его работа, а также возможность кратковременной перегрузки.

При соединении треугольником обмоток асинхронного электродвигателя происходит достижение его максимальной мощности, но во время пуска пусковые токи имеют большое значение. Также замечено, что при соединении треугольником двигатель больше нагревается (выявлено опытным путем с помощью тепловизора при одной и той же нагрузке).

В связи с вышесказанным, принято асинхронные двигатели средней  мощности и выше запускать по схеме звезда. При наборе номинальной частоты вращения в автоматическом режиме происходит переключение его на схему треугольника. Эту схему мы с Вами рассмотрим в ближайших статьях. Следите за обновлениями на сайте.

P.S. А что делать, когда вывода фазных обмоток асинхронного двигателя не про маркированы соответствующим образом? Об этом Вы узнаете в моей статье про определение начала и конца обмоток электродвигателя. Чтобы не пропустить выход новой статьи, то подпишитесь. Форма подписки расположена в конце статьи или в правом сайтбаре.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Соединение звездой в трехфазной системе — связь между фазой и линией, напряжением и током

В схеме Star Connection одинаковые концы (начало или конец) трех обмоток подключены к общей точке, называемой звездой или нейтральной точкой. Трехлинейные проводники отходят от оставшихся трех свободных клемм, называемых линейными проводниками .

Провода подводятся к внешней цепи, образуя трехфазные трехпроводные системы, соединенные звездой.Однако иногда четвертый провод проходит от точки звезды к внешней цепи, называемый нейтральным проводом , образуя трехфазные четырехпроводные системы, соединенные звездой.

Состав:

Соединение звездой показано на схеме ниже:

Принимая во внимание приведенный выше рисунок, конечные клеммы a 2 , b 2 и c 2 трех обмоток соединены, образуя звезду или нейтраль. Три проводника, обозначенные как R, Y и B, отходят от оставшихся трех свободных клемм, как показано на рисунке выше.

Ток, протекающий через каждую фазу, называется Фазный ток I ph , а ток, протекающий через каждый линейный провод, называется Line Current I L . Аналогичным образом, напряжение на каждой фазе называется Phase Voltage E ph , а напряжение на двух линейных проводниках известно как Line Voltage E L .

Зависимость между фазным напряжением и линейным напряжением при соединении звездой

Подключение звездой показано на рисунке ниже:

Поскольку система сбалансирована, сбалансированная система означает, что на всех трех фазах, т.е.е., R, Y и B, через них протекает равное количество тока. Следовательно, три напряжения E NR , E NY и E NB равны по величине, но электрически смещены друг от друга на 120 °.

Диаграмма Phasor звездного соединения показана ниже:

Стрелки на ЭДС и токе указывают направление, а не их фактическое направление в любой момент.

Сейчас,

Между любыми двумя линиями есть двухфазные напряжения.

По следам петли НРИН

Чтобы найти векторную сумму ENY и –ENR, мы должны перевернуть вектор ENR и сложить его с ENY, как показано на векторной диаграмме выше.

Следовательно,

Аналогично

Следовательно, при соединении звездой линейное напряжение в 3 раза больше фазного напряжения.

Соотношение между фазным током и линейным током при соединении звездой

Тот же самый ток течет через фазную обмотку, а также в линейный провод, поскольку он включен последовательно с фазной обмоткой.

Где будет фазный ток:

Линейный ток будет:

Следовательно, в трехфазной системе звездообразного соединения линейный ток равен фазному току.

Напряжение, ток и мощность в трехфазном соединении звездой

Напряжение, ток и мощность в трехфазном соединении звездой:

Трехфазное соединение звездой — На рисунке 9.21 показана сбалансированная трехфазная система с соединением звездой.Напряжение, индуцированное в каждой обмотке, называется фазным напряжением (В ф. ). Аналогично, V RN , V YN и V BN представляют среднеквадратичные значения наведенных напряжений в каждой фазе. Напряжение, доступное между любой парой клемм, называется линейным напряжением L ). Аналогично, V RY , V YB и V BR известны как линейные напряжения . Обозначение с двойным нижним индексом специально используется для обозначения напряжений и токов в многофазных цепях.Таким образом, V RY указывает напряжение V между точками R и Y, причем R является положительным по отношению к точке Y во время ее положительного полупериода.

Аналогично, V YB означает, что Y положителен по отношению к точке B в течение своего положительного полупериода; это также означает, что V RY = -V YR .

Отношение напряжений:

Векторы, соответствующие фазным напряжениям, составляющим трехфазную систему, могут быть представлены векторной диаграммой, как показано на рис.9.22.

Из рис. 9.22, учитывая линии R, Y и R, линейное напряжение V RY равно векторной сумме V RN и V NY , которая также равна разности векторов V RN. и V NY (V NY = -V YN ). Следовательно, V RY находится путем пересчета V RN и V YN в обратном порядке. Чтобы вычесть V YN из V RN , мы обращаем вектор V YN и находим его сумму векторов с V RN , как показано на рис.9.22. Два вектора, V RN и -V YN , равны по длине и разнесены на 60 °.

Аналогично, линейное напряжение V YB равно разности векторов V YN и V BN и равно √3 V Ph. Линейное напряжение V BR равно вектору разность V BN и V RN и равна √3 V Ph . Следовательно, в сбалансированной трехфазной системе соединения звездой

  • Напряжение сети = √3 В Ф.
  • Все линейные напряжения равны по величине и смещены на 120 °, а
  • Все линейные напряжения на 30 ° опережают их соответствующие фазные напряжения (из Рис.9.22).

Текущие отношения:

На рис. 9.24 (a) показана сбалансированная трехфазная система, соединенная звездой, с указанием фазных и линейных токов. Стрелки, расположенные рядом с токами I R , I Y и I B , протекающими в трех фазах, указывают направления токов, когда они предполагаются положительными, а не направления в данный конкретный момент. Векторная диаграмма фазных токов по отношению к их фазным напряжениям представлена ​​на рис.9.24 (б). Все фазные токи смещены на 120 ° друг относительно друга, ‘Φ’ — это фазовый угол между фазным напряжением и фазным током (предполагается запаздывающая нагрузка). Для сбалансированной нагрузки все фазные токи равны по величине. Из рис. 924 (а) видно, что каждый линейный провод соединен последовательно со своей отдельной фазной обмоткой. Следовательно, ток в линейном проводе такой же, как и в фазе, к которой подключен линейный провод.

Из рис.9.24 (b) видно, что угол между линейным (фазным) током и соответствующим линейным напряжением составляет (30 + Φ) ° для отстающей нагрузки. Следовательно, если нагрузка является опережающей, то угол между линейным (фазным) током и соответствующим линейным напряжением будет (30 — Φ) °.

Питание в сети, соединенной звездой:

Полная активная мощность или истинная мощность в трехфазной нагрузке — это сумма мощностей в трех фазах. Для сбалансированной нагрузки мощность каждой нагрузки одинакова; следовательно, общая мощность = 3 x мощность в каждой фазе

Обычно трехфазную мощность выражают в линейных величинах следующим образом.

или √3 В L I L cos Φ — активная мощность в цепи.

Общая реактивная мощность равна

Полная полная мощность или вольт-амперы

N-фазная звездная система:

Следует отметить, что звезда и сетка — общие термины, применимые к любому количеству фаз; но звезда и треугольник являются частными случаями звезды и сетки, когда система является трехфазной. Рассмотрим n-фазную сбалансированную звездную систему с двумя соседними фазами, как показано на рис.9.25 (а). Его векторная диаграмма показана на рис. 9.25 (b).

Угол разности фаз между соседними фазными напряжениями составляет 360 ° / n. Пусть E Ph будет напряжением каждой фазы. Напряжение в сети, то есть напряжение между A и B, равно E AB = E L = E AO + E OB . Сложение векторов показано на рис. 9.25 (c). Очевидно, что линейный ток и фазный ток одинаковы.

Рассмотрим параллелограмм OABC.

Приведенное выше уравнение является общим уравнением для линейного напряжения, например, для трехфазной системы n = 3 E L = 2 E ph sin 60 ° = √3 E ph .

Трехфазное соединение звездой (Y): трехфазное питание, напряжение, ток

Соединение звездой

При соединении звездой мы подключаем одни и те же стороны фазы к общей (общей) точке, известной как нейтральная точка, и обеспечиваем питание его свободные концы, которые остаются после этого, как показано на рисунке 1.{1} / {} _ {\ sqrt {3}} $, умноженное только на напряжение сети. Принимая во внимание, что в соединении Star , линейные и фазные токи остаются такими же как:

$ {{\ text {I}} _ {\ text {line}}} \ text {=} {{\ text {I}} _ {\ text {phase}}} $

Давайте рассмотрим трехфазный источник на рисунке 1, который имеет линейные выводы a, b и c и нейтральный вывод n. {o}} \\\ end {align} & \ cdots & (2) \\\ end {matrix} \]

В обоих случаях напряжение каждой фазы имеет одинаковую среднеквадратичную величину V p , а фазы смещены 120 o 90 340, при этом V и произвольно выбраны в качестве опорного вектора.Такой набор напряжений называется сбалансированным и характеризуется

$ \ begin {matrix} {{V} _ {an}} + {{V} _ {bn}} + {{V} _ {cn} } = 0 & \ cdots & (3) \\\ end {matrix} $

Как видно из (1) или (2).

Последовательность напряжений в (1) называется положительной последовательностью или ABC-последовательностью, а последовательность (2) — отрицательной последовательностью или ACB-последовательностью. Фазорные диаграммы двух последовательностей показаны на рисунке 2, где мы можем убедиться, проверив, что (3) выполняется. Очевидно, единственная разница между положительной и отрицательной последовательностями — это произвольный выбор терминальных меток a, b и c.{o}} \\\ end {align} & \ cdots & (6) \\\ end {matrix} \]

Эти результаты также могут быть получены графически из векторной диаграммы, показанной на рисунке (3).

Рис.3: Фазорная диаграмма, показывающая фазные и линейные напряжения

Соединение звездой Линейные и фазные токи

Давайте рассмотрим систему рисунка (4), которая сбалансирована YY, трехфазная, четырехпроводная система, если напряжения источника заданы формулой (1). Термин Y-Y применяется, поскольку и источник, и нагрузка подключены по схеме Y.Система называется сбалансированной, поскольку напряжения источников составляют сбалансированный набор, а нагрузка сбалансирована (полное сопротивление каждой фазы Z p одинаково). Четвертый провод — это нейтральная линия n-N, которую можно не использовать для создания трехфазной трехпроводной системы.

Рис. 4: Сбалансированная система YY

Линейные токи на рисунке 4, очевидно, равны

$ \ begin {matrix} \ begin {align} & {{I} _ {aA}} = \ frac {{{ V} _ {an}}} {{{Z} _ {p}}} \\ & {{I} _ {bB}} = \ frac {{{V} _ {bn}}} {{{Z} _ {p}}} = \ frac {{{V} _ {an}} \ angle — {{120} ^ {o}}} {{{Z} _ {p}}} = {{I} _ { aA}} \ angle — {{120} ^ {o}} \\ & {{I} _ {cC}} = \ frac {{{V} _ {cn}}} {{{Z} _ {p} }} = \ frac {{{V} _ {an}} \ angle {{120} ^ {o}}} {{{Z} _ {p}}} = {{I} _ {aA}} \ angle {{120} ^ {o}} \\\ end {align} & \ cdots & (7) \\\ end {matrix} $

Последние два результата являются следствием (4) и показывают, что линейные токи также образуют уравновешенный набор. {o}} \\\ end {align} & \ cdots & (8) \\\ end {matrix} \ ]

Где θ — угол Z p .{2} \ operatorname {Re} ({{Z} _ {p}}) \\\ end {align} & \ cdots & (9) \\\ end {matrix} $

И общая мощность, подаваемая на нагрузка составляет

$ {{P} _ {p}} = 3 {{P} _ {p}} $

Угол θ фазового сопротивления, таким образом, является углом коэффициента мощности трехфазной нагрузки, а также что одной фазы.

Сравнение соединений звездой и треугольником

Соединение звездой (Y или звезда) Соединение треугольником (Δ)
Соединение звездой — это 4-проводное соединение (4-й провод в некоторых случаях является дополнительным) Дельта-соединение — это 3-проводное соединение.
Возможны два типа систем соединения звездой: 4-проводная 3-фазная система и 3-проводная 3-фазная система. При соединении треугольником возможна только 3-проводная 3-фазная система.
Из 4 проводов 3 провода являются фазами, а 1 провод — нейтралью (которая является общей точкой 3 проводов). Все 3 провода являются фазами при соединении треугольником.
При соединении звездой один конец всех трех проводов подключен к общей точке в форме Y, так что все три открытых конца трех проводов образуют три фазы, а общая точка образует нейтраль. . При соединении треугольником каждый провод соединен с двумя соседними проводами в форме треугольника (Δ), и все три общие точки соединения образуют три фазы.
Общая точка звездообразного соединения называется нейтралью или звездой. В соединении треугольником нет нейтрали.
Линейное напряжение (напряжение между любыми двумя фазами) и фазное напряжение (напряжение между любой из фаз и нейтралью) различаются. Линейное и фазное напряжение одинаковы.
Линейное напряжение равно трехкратному основному фазному напряжению, то есть VL = √3 VP. Здесь VL — линейное напряжение, а VP — фазное напряжение. Линейное напряжение равно фазному напряжению, то есть VL = VP.
При соединении звездой вы можете использовать два разных напряжения, поскольку VL и VP различны. Например, в системе 230 В / 400 В напряжение между любым фазным проводом и нейтральным проводом составляет 230 В, а напряжение между любыми двумя фазами — 400 В. При соединении треугольником мы получаем только одно значение напряжения.
Линейный ток и фазный ток одинаковы. Линейный ток в три раза больше тока фазы.
В соединении звездой, IL = IP. Здесь IL — линейный ток, а IP — фазный ток. При соединении треугольником, IL = √3 IP
Общая трехфазная мощность при соединении звездой может быть рассчитана по следующим формулам.
P = 3 x VP x IP x Cos (Φ) или
P = √3 x VL x IL x Cos (Φ)
Общая трехфазная мощность при соединении треугольником может быть рассчитана по следующим формулам.
P = 3 x VP x IP x Cos (Φ) или
P = √3 x VL x IL x Cos (Φ)
Поскольку линейное и фазовое напряжение различны (VL = √3 VP), изоляция требуется для каждой фазы меньше при соединении звездой. При соединении треугольником линейное и фазное напряжения одинаковы, поэтому для отдельных фаз требуется дополнительная изоляция.
Обычно соединение звездой используется как в передающих, так и в распределительных сетях (с однофазным питанием или трехфазным. Delta Connection обычно используется в распределительных сетях.
Поскольку требуется меньшая изоляция, соединение звездой может использоваться на больших расстояниях. Соединения треугольником используются для меньших расстояний.
Соединения звездой часто используются в приложениях, требующих меньшего пускового тока. Соединения треугольником часто используются в приложениях, требующих высокого пускового момента.

Трехфазные соединения Соединения звездой и треугольником

В трехфазной системе есть два типа соединений: звезда и треугольник.Каждый из них будет рассмотрен кратко и простыми словами.

Трехфазное соединение Соединение звездой и треугольником

Соединение звездой (трехфазная четырехпроводная система)

Соединение звездой имеет три фазы и одну общую нейтральную линию, поэтому соединение звездой используется для передачи на большие расстояния. Теперь основное, что мы обсуждаем, это сбалансированный и несимметричный ток. Если все фазы имеют одинаковый ток, это называется сбалансированным током, а когда ток не сбалансирован во всех фазах, это называется несимметричным током.

Несимметричный ток может повредить трансформатор, нейтраль используется для защиты трансформатора и обеспечивает короткий путь к земле для несимметричного тока.

когда ток уравновешен во всех фазах, то в нейтральной линии нет тока.

В трехфазном соединении звездой используются некоторые термины.

Напряжение сети

Напряжение, измеренное между двумя фазами в трехфазной системе, называется линейным напряжением.

Фазное напряжение

Напряжение, измеренное между одной фазной линией и нейтралью, называется фазным током.

Примечание: ток в линии и фазном напряжении будет одинаковым.
Пожалуйста, прочтите также: ПОЛЕВЫЕ ИСПЫТАНИЯ И ПРОВЕРКА НИЗКОГО НАПРЯЖЕНИЯ ДВИГАТЕЛЯ
Пожалуйста, прочтите также: ВЫСОКОГО НАПРЯЖЕНИЯ ПЕРЕДАЧА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ИСПЫТАНИЕ_ПРЕДУПРЕЖДЕНИЕ
Пожалуйста, прочтите также:

КАТЕГОРИИ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ СИСТЕМЫ ДЕЛИТА

Между треугольником и звездой существует большая разница. Соединение треугольником не имеет нейтральной линии, когда нагрузка подключена треугольником в базовой станции, земля может использоваться в качестве нейтральной линии.Это соединение несет ток небаланса, поэтому оно используется для передачи на короткие расстояния.

При соединении треугольником линейное напряжение и фазное напряжение одинаковы. Линейный ток в √3 раза больше фазного тока.

Соединение по схеме «треугольник» и «звезда» не зависит от мощности. Общая мощность (полезная мощность) будет одинаковой в обоих вариантах.

Мощность может быть рассчитана как

PF (коэффициент мощности) наиболее важен в трехфазной системе, если найдено какое-то значение PF, оно должно быть скорректировано инженерами и техниками.Коэффициент мощности можно регулировать с помощью конденсаторов.

Как это:

Нравится Загрузка …

Определение звездообразного соединения — ваше электрическое руководство

В этом методе соединения три одинаковых конца a ’, b’, c ’трех обмоток соединены вместе в общей точке. Эта точка известна как точка звезды или нейтраль N.

Три проводника, встречающиеся в точке звезды, заменяются одним проводником, известным как нейтральный проводник (или нейтраль).

Если напряжение генератора переменного тока, подключенного звездой, подается на сбалансированную нагрузку, нейтральный провод будет проводить три тока нагрузки, которые точно равны по величине, но не совпадают по фазе между собой 120 или . Следовательно, их векторная сумма равна нулю.

, т.е. I a + I b + I c = 0,
или I N = 0.

В случае сбалансированных нагрузок нейтраль может быть опущено, чтобы дать нам трехфазную трехпроводную систему.Трехфазная четырехпроводная система широко используется для подачи электроэнергии бытовым, а также коммерческим и промышленным потребителям, поскольку она обеспечивает два различных значения напряжения питания.

В системах с соединением звездой (т. Е. Генераторы или трансформаторы) разность потенциалов между любой линией (или клеммой) и нейтралью называется фазным напряжением (V PH ), но разность потенциалов между любыми двумя линиями дает линейное напряжение (V L ).

В симметричном соединении звездой

В L = √3 В ф. (по величине)

Но линейное напряжение опережает фазное напряжение на 30 o .

I L = I ф. (по величине и фазе)

Мощность, P трехфазный = √3 В L I L cos φ

Мощность, P трехфазный = 3 В ф. I ф. cos φ

При рассмотрении распределения тока в трехфазной системе всегда учитывайте следующие два момента:

  1. Стрелки, расположенные рядом с фазными токами I a , I b и I c указывают направление тока, когда они предполагаются положительными, а не направление в конкретный момент и ни в какой момент все три тока не будут течь в одном и том же направлении.Это потому, что три тока имеют разность фаз 120 o .
  2. Ток, текущий наружу в одном проводе, равен сумме токов, текущих внутрь в двух других проводниках. Это означает, что каждый проводник обеспечивает обратный путь для токов двух других проводников.

Преимущества и применение звездообразного соединения

  • Трехфазные генераторы обычно подключаются в звезду. Причина в том, что на каждую фазную обмотку генератора переменного тока будет приходиться только 1 / √3 сетевого напряжения.Это означает, что в генераторе, подключенном по схеме «звезда», количество витков катушки на фазу меньше, чем для генератора, подключенного по схеме «треугольник».
  • Соединение звездой обеспечивает два напряжения, то есть фазное напряжение и линейное напряжение. Следовательно, осветительные нагрузки подключаются по трем фазам, тогда как силовые нагрузки, такие как трехфазные двигатели, подключаются по линиям.
  • Еще одним преимуществом соединения звездой является то, что нейтраль генератора может быть заземлена. В этом случае разность потенциалов между каждой линией и землей равна фазному напряжению i.е. V L / √3.

    Следовательно, если посредством линии короткого замыкания проводник заземлен, изолятор должен выдерживать только напряжение V L / √3. Но в случае соединения треугольником изолятор должен выдерживать полное линейное напряжение V L . Это увеличит вероятность выхода из строя изолятора.

Сбалансированная звезда

Сбалансированное соединение звездой — это соединение, в котором три фазных напряжения равны по величине, но смещены друг от друга на 120 o .В сбалансированной системе, соединенной звездой, три линейных напряжения также будут равны по величине, но смещены друг от друга на 120 o .

Основы AC | Все сообщения

© http://www.yourelectricalguide.com/ определение звездообразного соединения.

Подключение трехфазного трансформатора

| electricaleasy.com

Подключение трехфазного трансформатора
В трехфазной системе три фазы могут быть подключены по схеме звезды или треугольника. Если вы не знакомы с этими конфигурациями, изучите следующее изображение, которое объясняет конфигурацию звезды и треугольника.В любой из этих конфигураций между любыми двумя фазами будет разница в 120 °.

Подключение трехфазного трансформатора

Обмотки трехфазного трансформатора могут быть соединены в различных конфигурациях: (i) звезда-звезда, (ii) треугольник-треугольник, (iii) звезда-треугольник, (iv) треугольник-звезда, (v) открытый треугольник и (vi) Связь со Скоттом. Эти конфигурации объясняются ниже.

Звезда-звезда (Y-Y)
  • Соединение звезда-звезда обычно используется для небольших высоковольтных трансформаторов.Из-за соединения звездой количество необходимых витков на фазу уменьшается (поскольку фазное напряжение при соединении звездой составляет только 1 / √3 раз от напряжения сети). Таким образом, уменьшается и количество необходимой изоляции.
  • Отношение линейных напряжений на первичной и вторичной сторонах равно коэффициенту трансформации трансформаторов.
  • Напряжения в линиях с обеих сторон синфазны.
  • Это соединение можно использовать, только если подключенная нагрузка сбалансирована.
Дельта-дельта (Δ-Δ)
  • Это соединение обычно используется для больших низковольтных трансформаторов.Количество необходимых фаз / витков относительно больше, чем для соединения звезда-звезда.
  • Отношение линейных напряжений на первичной и вторичной сторонах равно коэффициенту трансформации трансформаторов.
  • Это соединение можно использовать даже при несимметричной нагрузке.
  • Еще одно преимущество этого типа подключения состоит в том, что даже если один трансформатор отключен, система может продолжать работать в режиме открытого треугольника, но с уменьшенной доступной мощностью.
Звезда-треугольник ИЛИ звезда-треугольник (Y-Δ)
  • Первичная обмотка соединена звездой звезда (Y) с заземленной нейтралью, а вторичная обмотка соединена треугольником.
  • Это соединение в основном используется в понижающем трансформаторе на стороне подстанции линии передачи.
  • Отношение вторичного напряжения к первичному в 1 / √3 раза больше коэффициента трансформации.
  • Между напряжениями первичной и вторичной сети имеется сдвиг на 30 °.
Дельта-звезда ИЛИ треугольник-звезда (Δ-Y)
  • Первичная обмотка соединена треугольником, а вторичная обмотка соединена звездой с заземленной нейтралью. Таким образом, его можно использовать для обеспечения 3-фазной 4-проводной связи.
  • Этот тип подключения в основном используется в повышающих трансформаторах в начале линии передачи.
  • Отношение вторичного напряжения к первичной линии в √3 раз больше коэффициента трансформации.
  • Между напряжениями первичной и вторичной сети имеется сдвиг на 30 °.

Вышеуказанные конфигурации подключения трансформатора показаны на следующем рисунке.

Открытое соединение треугольником (V-V)

Используются два трансформатора, а первичные и вторичные соединения выполняются, как показано на рисунке ниже.Открытое соединение треугольником может использоваться, когда один из трансформаторов в группе Δ-Δ отключен, и обслуживание должно продолжаться до тех пор, пока неисправный трансформатор не будет отремонтирован или заменен.
Его также можно использовать для небольших трехфазных нагрузок, когда нет необходимости в установке полной трехтрансформаторной батареи.
Общая допустимая нагрузка при подключении по схеме «открытый треугольник» составляет 57,7%, чем при подключении по схеме «треугольник».

Скотт (Т-Т) соединение

В этом типе подключения используются два трансформатора.Один из трансформаторов имеет центральные отводы как на первичной, так и на вторичной обмотке (который называется главным трансформатором). Другой трансформатор называется трансформатором-тизером.
Соединение Скотта также можно использовать для преобразования трех фаз в двухфазное.
Подключение выполняется, как показано на рисунке ниже.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *