Сопротивление обмоток постоянному току: Измерение сопротивления обмоток постоянному току / Справка / Energoboard

Содержание

Измерение сопротивления обмоток постоянному току / Справка / Energoboard

Измеряются междуфазные сопротивления на всех ответвлениях обмоток всех фаз, если для этого не потребуется выемки сердечника. При наличии нулевого провода дополнительно измеряется одно из фазных сопротивлений. Сопротивление должно отличаться не более чем на 2% от сопротивления, полученного на таком же ответвлении других фаз, или от данных завода-изготовителя.

Измерением сопротивления постоянному току обмоток силовых трансформаторов выявляются дефекты:

  • в местах соединений ответвлений к обмотке;
  • в местах соединений выводов обмоток к выводам трансформатора;
  • в местах соединения отпаек к переключателю;
  • в переключателе — в контактах переключателя и его сочленениях;
  • обрывы в обмотках (например, в проводах параллельных ветвей).

Измерения сопротивления постоянному току производятся мостовым методом или методом амперметра-вольтметра (см. рис. 2.3).

Метод амперметра-вольтметра. Измерения производятся приборами с классом точности 0,5. Пределы измерений приборов должны быть выбраны такими, чтобы отсчеты проводились во второй половине шкалы. Величина тока не должна превышать 20% номинального тока объекта измерения во избежание искажения результатов измерения из-за нагрева. Для исключения ошибок, обусловленных индуктивностью обмоток, сопротивление нужно измерять при полностью установившемся токе.

При измерениях сопротивления обмотки, обладающей большой индуктивностью, методом амперметра-вольтметра рекомендуется применять схему измерения, позволяющую снизить время установления тока в измерительной цепи временной формировкой тока. Это достигается шунтированием реостата (или части его) в течение нескольких секунд. Сопротивление реостата берут не менее чем в 8 — 10 раз большее, чем сопротивление обмотки.

Мостовой метод. Измерения производятся мостами типа Р333, Р369, MО-70, P329. При измерении сопротивления мостами в цепь питания рекомендуется включать дополнительное сопротивление снижая тем самым постоянную времени цепи, что ведет к уменьшению времени установления тока. В этих случаях для получения необходимого тока должна быть применена аккумуляторная батарея более высокого напряжения. Во избежание повреждения моста, гальванометр включают при установившемся значении тока, а отключают до отключения тока.

Сопротивление постоянному току измеряется для всех ответвлений обмоток всех фаз. При наличии выведенной нейтрали измерение производится между фазовым выводом и нулевым. Измеренное линейное значение сопротивления между линейными выводами пересчитывается на фазное по формулам при соединении обмоток трансформатора в звезду

при соединении обмоток трансформатора в треугольник

 

где Rф, — приведенное фазовое сопротивление;

Rизм — измеренное сопротивление между линейными выводами.

Сопротивления обмоток постоянному току различных фаз на одноименных ответвлениях не должны отличаться друг от друга или от предыдущих (заводских) результатов измерений более, чем ±2%. Кроме того, должна соблюдаться одинаковая по фазам закономерность изменения сопротивления постоянному току по ответвлениям в различных положениях переключателя. Этим проверяется правильность подсоединения ответвлений к переключателю и его работы.

Особое внимание необходимо обращать на закономерность изменения сопротивления постоянному току по отпайкам в трансформаторах с переключателями под нагрузкой. Нарушения закономерности по фазам и между фазами у трансформаторов с РПН могут иметь место из-за неправильного сочленения валов переключателя и работы его привода, а также из-за неправильного подсоединения отпаек обмоток к переключающему устройству.

Результаты измерений сопротивления постоянному току должны сравниваться только при одной и той же температуре.

Пересчет сопротивления на другую температуру производят по формуле

 

где R1 — сопротивление, измеренное при температуре t1,

R2- сопротивление, приводимое к температуре t2;

К — коэффициент равный 245 для обмоток из алюминия, и 235 — из меди.

За температуру обмотки масляных трансформаторов полностью собранных и залитых маслом принимается установившаяся температура верхних слоев масла.

Для сухих трансформаторов и сердечников масляных трансформаторов, вынутых из масла, за температуру обмотки может быть принята температура окружающего воздуха, если трансформатор находился в данных условиях не менее 12 час.

Таблица 2.8. Средние значения фазных сопротивлений обмоток трансформатора постоянному току при t=20°С





































Мощность,

кВ·А
Тип Напряжение, кВ
0,4 3 6 10 35 110 220
10 ТМ 0,18 15,0 60,0 100,0
20 ТМ 0,08 6,0 25,0 67,0
25 ТСМ 33,0
30 ТМ 0,25 40,0
50 ТМ 0,03 2,0 10,0 26,0
50 ТМА 0,025 8,75
100 ТМ 0,45 0,9 3,6 10,0
180 ТМ 0,008 0,54 1,5 5,1
180 ТМА 0,01 1,27 3,6
250 ТМ 1,54
250 ТМА 0,003 0,9 4,4
320 ТМ 0,004 0,23 0,8 2,5
320 ТМА 0,003 0,6 1,5
400 ТМ 0,02 0,1
560 ТМ 0,002 0,3 0,8
560 ТМА 0,001 0,8
630 ТМ 0,7
1000 ТМ 0,0008 0,17 0,7
1000 TCЗC 0,0006 0,26
1800 ТМ 0,004 0,3
3200 ТМ 0,25 0,16
4000 ТМ 0,08 0,09
5600 ТМ 0,03 0,07
10000 ТДМ 0,017 0,007 4,15
10000 ТДТ 0,57 0,424 4,40
15000 ТДГ 0,005 2,9
15000 ТДНГ 0,004 3,0
16000 ТДНГ 0,015 2,1
31500 ТДНГ 0,012 1. 1
40000 ТРДЦ
40500 ТДГ
60000 ТДГ
90000 ТДГН 0,003 0,75
240000 АТЦТГ 0,0048 0,145 0,299

Примечание: Представлены данные, имеющиеся в распоряжении разработчика и предназначены для ориентировки обслуживающего персонала.

Испытания силовых трансформаторов тока, напряжения, измерительных, заземляющих устройств, обмоток и изоляции трансформатора, реакторов токоограничивающих

Заказать услугу

Трансформаторы используются в различных областях электротехники — энергетике, электронике и радиотехники.

Эти устройства предназначены для преобразования напряжения переменного тока и гальванической развязки. В зависимости от назначения и особенностей конструкции различают автотрансформаторы, силовые, разделительные, согласующие трансформаторы, автотрансформаторы, трансформаторы тока и напряжения.

Наиболее широкое применение нашли силовые трансформаторы, осуществляющие преобразование электроэнергии в электросетях различного назначения.

Перед проведением испытаний проводится внешний осмотр всех элементов трансформатора, включая проверку наличия пломб на кранах и у пробки для отбора масла, проверка уровня масла в трансформаторе и его заземления.

Проверка и испытание силовых трансформаторов напряжением до 10 кВ:

  • измерение сопротивления обмоток постоянному току и сопротивления изоляции;
  • проверка коэффициента трансформации и группы соединения обмоток;
  • испытание пробы масла;
  • испытание изоляции повышенным напряжением промышленной частоты (50 Гц), приложенным от внешнего источника;
  • измерение тока холостого хода.

Измерение сопротивления обмоток постоянному току и сопротивления изоляции

Измерение сопротивления обмоток трансформатора постоянному току производится с целью выявления обрывов обмотки и ответвлений, плохих контактов, нарушения паек и обнаружения витковых замыканий в катушках. Сопротивление обмоток измеряют мостовым методом или методом падения напряжения.

При измерении сопротивления обмоток трансформаторов постоянному току необходимо использовать приборы повышенной точности класса 0,5; поскольку по результатам этих измерений выявляют характерные дефекты: недоброкачественную пайку и плохие контакты в обмотке и в присоединении вводов; обрыв одного или нескольких из параллельных проводов в обмотках.

Сопротивление изоляции определяют мегаомметром на 1000, 2500 В с верхним пределом измерения не ниже 10 000 МОм. Перед измерениями испытываемую обмотку заземляют на 2—5 мин для снятия возможного емкостного заряда. Измерения осуществляют между каждой обмоткой и корпусом и между обмотками при отсоединенных и заземленных на корпус остальных обмотках.

Состояние изоляции обмоток определяют не только абсолютным значением ее сопротивления, но и коэффициентом абсорбции Кабс = R60/R15. Измерение сопротивления изоляции позволяет судить как о местных дефектах, так и о степени увлажнения изоляции обмоток трансформатора. Значение сопротивления изоляции R60 не нормируется, но его необходимо сравнивать с данными заводских испытаний.

Коэффициент абсорбции также не нормируется, но обычно при 10—30 °С для трансформаторов с неувлажненными обмотками напряжением до 35 кВ включительно он находится в пределах 1,3 и выше, для трансформаторов 110 кВ и выше — в пределах 1,5—2,0. Для трансформаторов с увлажненными обмотками этот коэффициент близок к 1,0. Во время пусконаладочных работ сопротивление изоляции измеряют при различных температурах.

Определение коэффициента трансформации

При измерениях проверяют коэффициент трансформации на всех ответвлениях обмоток и для всех фаз, его соответствие паспортному, а также правильность установки переключателя напряжения на ступенях. Коэффициент трансформации определяют по отношению напряжений обмоток ВН, СН, НН с учетом схемы их соединения. Для измерения коэффициента трансформации применяют метод двух вольтметров, причем выбирают приборы класса 0,5. При испытании трехфазных трансформаторов одновременно измеряют линейные напряжения, соответствующие одноименным линейным зажимам проверяемых обмоток. Подводимое напряжение должно быть от одного до нескольких десятков процентов номинального, причем большие значения относятся к трансформаторам меньшей мощности, а меньшие значения — к трансформаторам большей мощности. Как правило, коэффициент трансформации измеряют при трехфазном возбуждении обмоток трансформатора.

Проверка группы соединения обмоток силовых трансформаторов

Проверка группы соединения обмоток трехфазных трансформаторов производится для установления идентичности групп соединения трансформаторов предназначенных для параллельной работы.

Проверка производится при монтаже в случае отсутствия паспортных или заводских данных.

В эксплуатации проверка производится при ремонтах с частичной или полной сменой обмоток.

Проверку группы соединений осуществляют: двумя вольтметрами, методом импульсов постоянного тока, фазометром. В практике наладочных работ широко распространены первые два метода.

Метод двух вольтметров для определения группы соединения основан на совмещении векторных диаграмм первичного и вторичного напряжений. Пользуясь полученными результатами, строят векторную диаграмму для определения значений напряжения.

Метод импульсов постоянного тока сводится к поочередному определению полярности («+» или «—») зажимов ab, bс, са трансформатора гальванометром. При этом к выводам АВ, ВС, СА обмотки высшего напряжения подводят напряжение 2—12 В от гальванической батареи. В обмотке низшего  напряжения индуктируется ЭДС определенного знака.

Полученные результаты сравнивают с данными, приведенными в специальной таблице. В качестве гальванометра используют любые гальванометры магнитоэлектрической системы, например Ml06, М45М, М250.

Измерение тока холостого хода

Во время этого испытания проверяют состояние магнитопровода трансформатора. При его повреждениях, например нарушении изоляции между листами, потери и ток холостого хода увеличиваются. Кроме того, резкое увеличение тока холостого хода — показатель наличия замыкания между витками одной из обмоток, местного нагрева и пр. При измерении холостого хода к обмотке низшего напряжения при разомкнутых остальных обмотках подают номинальное напряжение синусоидальной формы и номинальной частоты. Ток холостого хода измеряют Амперметорм. Полученный при измерениях, он не должен отличаться от заводских данных более чем на 30 %.

Испытание пробы масла

Обычно силовые трансформаторы I и II габаритов прибывают на монтаж заполненные маслом. В таких случаях при наличии удовлетворяющих нормам заводских испытаний, проведенных не более чем за 6 мес. до включения в работу трансформатора, разрешается испытывать масло по сокращенной программе: на электрическую прочность и визуальное определение содержания механических примесей.

Пробу масла отбирают из нижней части бака, предварительно промыв сливное отверстие. Посуда, в которую отбирают пробу масла, должна быть чистой, хорошо высушенной и плотно закрытой.

Минимальное пробивное напряжение масла определяют на аппаратах АИМ-90 в маслопробном сосуде со стандартным разрядником, который выполнен в виде двух латунных электродов диаметром 25 мм с закругленными краями и расстоянием между электродами 2,5 мм. Залитое в сосуд масло выдерживается 30 мин. для удаления воздушных пузырьков. Повышение напряжения до пробоя осуществляется плавно со скоростью до 2 кВ/с, причем выполняется 5—6 пробоев с интервалом 10 мин. между ними. Первый пробой не учитывают. Электрическую прочность масла определяют как среднее арифметическое и сравнивают с табличными данными в ПУЭ. При отсутствии протокола заводских испытаний делают полный анализ пробы масла. 

Испытание изоляции повышенным напряжением промышленной частоты (F=50 Гц)

Испытание повышенным напряжением переменного тока промышленной частоты является основным, подтверждающим исправное состояние изоляции обмоток трансформатора и наличие необходимого запаса их электрической прочности. Этому испытанию подвергают каждую обмотку трансформатора по отношению к корпусу, к которому на время испытания присоединяют остальные, предварительно закороченные обмотки.

Фазировка трансформатора

Фазировка трансформатора производится измерением напряжения между разноименными фазами включаемого трансформатора и сети (или другого трансформатора) и контролем отсутствия напряжения между фазами. Проверка осуществляется с помощью вольтметра или специальных указателей.

Испытания, регламентированные в ПУЭ (приемо-сдаточные) и ПТЭЭП (профилактические) проводит электролаборатория «Лидер» с помощью сертифицированных приборов, таких как: аппарат испытания диэлектриков «АИСТ 50/70», мегаомметр «Е6-32», омметр «Виток» и др.

По окончании проведения испытаний и измерений полученные данные вносятся в протокол установленной формы испытания трансформатора. Вывод трансформатора в работу возможен при соответствии всех результатов установленным нормам и требованиям.

Измерение сопротивления обмоток трансформатора постоянному току | Технология и оборудование производства трансформаторов | Архивы

Страница 86 из 92

Измерение сопротивления обмоток трансформатора постоянному току входит в обязательный объем контрольных испытаний каждого выпускаемого с завода трансформатора. По результатам измерения сопротивления обмоток можно оценить качество соединений и паек в обмотках, качество контактов переключателей, установить отсутствие обрывов в обмотках или в отдельных параллельных ветвях. Сопротивление измеряют у всех обмоток (ВН, НН, СН) на всех доступных ответвлениях.

В трехфазных трансформаторах измеряют сопротивление каждой обмотки для всех трех фаз, для чего определяют сопротивление между началом и концом каждой фазы. Если нет вывода нейтральной точки, сопротивление измеряют между линейными зажимами. Сопротивление фазы составляет rф=rИЗM/2 при соединении обмотки В звезду и rф = 3 rизм/2 при соединении В треугольник, где rизм — измеренное сопротивление обмотки.


Рис. 22-10. Схема измерения сопротивления обмоток.

а— при малом сопротивлении; б —при большом сопротивлении.

Сопротивления обмоток различных фаз отличаются более чем на 2%. Если они отличаются больше, значит, имеется какой-то дефект в токоведущей цепи: плохое качество соединения, пайки обмотки или контакта переключателя, обрыв параллельной ветви.

Измеренное сопротивление приводят к рабочей температуре обмотки трансформатора (75 °С для масляных трансформаторов) по формуле


где Т — температура обмотки при измерениях, принимаемая равной температуре верхних слоев масла или температуре окружающего воздуха.

Сопротивление обмоток трансформатора определяют по падению напряжения (показаниями амперметра и милливольтметра) и с помощью мостовой схемы. Метод падения напряжения проще измерения по мостовой схеме, но дает менее точные результаты.

При измерении сопротивления по падению напряжения обмотку трансформатора включают в сеть источника постоянного тока. Во избежание нагрева обмоток, вносящего ошибки в результаты измерений, ток при измерении сопротивления не должен превышать 20% номинального тока обмотки. Схема включения измерительных приборов зависит от величины измеряемого сопротивления.

При малом сопротивлении обмотки трансформатора вольтметр (милливольтметр) включают непосредственно на зажимы обмотки (рис. 22-10,а). В этом случае сопротивление вольтметра очень велико по сравнению с сопротивлением обмотки трансформатора, так что током, протекающим через вольтметр, можно пренебречь. При большом сопротивлении обмотки амперметр должен быть включен последовательно с обмоткой (рис. 22-10,б) так чтобы через амперметр протекал ток, равный току в обмотке. Сопротивление амперметра очень мало по сравнению с сопротивлением обмотки трансформатора, и ошибка измерения будет мала.

На практике сопротивление обмотки сопоставляют со среднегеометрическим значением сопротивлений амперметра и вольтметра. При сопротивлении обмотки трансформатора, меньшим среднегеометрического значения сопротивлений измерительных приборовприменяют схему, изображенную на рис. 22-10,а; при -—схему, показанную на рис. 22-10,6,


Рис. 22-11. Принципиальная схема моста для измерения сопротивления обмотки трансформатора.

Сопротивление обмотки трансформатора, где и — напряжение, определяемое показанием вольтметра; 1 — ток (по показанию амперметра).

Сопротивление обмотки определяется по формуле, когда требуется учитывать ток, протекающий через вольтметр при использовании первой схемы:


Если требуется учитывать сопротивление амперметра при применении второй схемы, то сопротивление обмотки определяется по формуле


Сопротивление проводов, присоединяющих вольтметр к обмотке, не должно превышать 0,5% сопротивления обмотки этого прибора.

Так как обмотки трансформатора имеют значительную индуктивность, то при подключении к источнику постоянный ток устанавливается в них не сразу, а в течение некоторого времени. Поэтому в первый момент после включения в обмотке индуктируется сравнительно большая э. д. с., которая может вызвать повреждение вольтметра. Вследствие этого вольтметр включают после того, как стрелка амперметра станет неподвижной.

Сопротивления обмоток трансформатора можно измерять омметром. Однако такое измерение неточно, и в случаях, когда необходимо получить высокую точность измерения, оно не применяется.

Принципиальная схема моста для определения сопротивления обмотки трансформатора изображена на рис. 22-11. При равенстве потенциалов точек А и В стрелка гальванометра стоит на нуле, если соблюдено условие равенства падений напряжения как в сопротивлениях 1 и 2, так и в сопротивлениях 3 и изм.


Рис. 22-12. Автотрансформатор 417 МВ • А, 750 кВ на высоковольтных испытаниях.

1 — экран ввода 750 кВ; 2 — экранировка делителя; 3 — экран ввода 500 кВ; 4 — экран ввода 132 кВ; 5 — экран ввода 35 кВ; 6 — делитель напряжения ДН-1000; 7 — экранировка ввода

750 кВ и делителя.

Отношение этих равенств составляет:

Сопротивления 1 и 3 известны, и одно (два или три) из них, например 1, можно регулировать в широких пределах. Это сопротивление устанавливают таким, чтобы показание гальванометра было равно нулю, после этого определяют искомое сопротивление обмотки. Измерение сопротивления по мостовой схеме обеспечивает высокую точность.

Испытания, входящие в состав типовых, т. е. импульсные испытания полной и срезанной волнами, тепловые, механические испытания на динамическую устойчивость, представляют сложный комплекс различных работ, проводятся специализированными лабораториями, оснащенными специальным оборудованием. Эти испытания подробно описаны в [Л. 8, 35] и здесь не рассматриваются.

На рис. 22-12 показан автотрансформатор 417 МВ-А, 750 кВ на высоковольтных испытаниях.

ПУЭ Раздел 1 => 4. измерение сопротивления обмоток постоянному току.. 5. проверка коэффициента трансформации.. 6. проверка группы…

4. Измерение сопротивления обмоток постоянному току.

Производится на всех ответвлениях. Сопротивление должно отличаться не более чем на 2 % от сопротивления, полученного на таком же ответвлении других фаз, или от данных завода-изготовителя.

Значение сопротивления обмоток однофазных трансформаторов после температурного перерасчета не должно отличаться более чем на 5% от исходных значений.

5. Проверка коэффициента трансформации.

Производится на всех ступенях переключения. Коэффициент трансформации должен отличаться не более чем на 2% от значений, полученных на том же ответвлении на других фазах, или от данных завода-изготовителя. Для трансформаторов с РПН разница между коэффициентами трансформации не должна превышать значения ступени регулирования.

6. Проверка группы соединения трехфазных трансформаторов и полярности выводов однофазных трансформаторов.

Производится, если отсутствуют паспортные данные или есть сомнения в достоверности этих данных. Группа соединений должна соответствовать паспортным данным и обозначениям на щитке.

7. Измерение потерь холостого хода.

Измерения производятся у трансформаторов мощностью 1000 кВ·А и более при напряжении, подводимом к обмотке низшего напряжения, равном указанному в протоколе заводских испытаний (паспорте), но не более 380 В. У трехфазных трансформаторов потери холостого хода измеряются при однофазном возбуждении по схемам, применяемым на заводе-изготовителе.

У трехфазных трансформаторов при вводе в эксплуатацию соотношение потерь на разных фазах не должно отличаться от соотношений, приведенных в протоколе заводских испытаний (паспорте), более чем на 5 %.

У однофазных трансформаторов при вводе в эксплуатацию отличие измеренных значений потерь от исходных не должно превышать 10 %.

7.1. Измерение сопротивления короткого замыкания (Zк) трансформатора.

Измерение производится у трансформаторов 125 MB·А и более.

Для трансформаторов с устройством регулирования напряжения под нагрузкой Zк измеряется на основном и обоих крайних ответвлениях.

Значения Zк не должны превышать значения, определенного по напряжению КЗ (uк) трансформатора на основном ответвлении более чем на 5 %.

8. Проверка работы переключающего устройства.

Производится в соответствии с указаниями завода-изготовителя.

9. Испытание бака с радиаторами.

Испытаниям подвергаются все трансформаторы, кроме герметизированных и не имеющих расширителя. Испытание производится:

— у трансформаторов напряжением до 35 кВ включительно — гидравлическим давлением столба масла, высота которого над уровнем заполненного расширителя составляет 0,6 м, за исключением трансформаторов с волнистыми баками и пластинчатыми радиаторами, для которых высота столба масла принимается равной 0,3 м;

— у трансформаторов с пленочной защитой масла — созданием внутри гибкой оболочки избыточного давления воздуха 10 кПа;

— у остальных трансформаторов — созданием избыточного давления азота или сухого воздуха 10 кПа в надмасляном пространстве расширителя.

Продолжительность испытания во всех случаях — не менее 3 ч. Температура масла в баке при испытаниях трансформаторов напряжением до 150 кВ включительно — не ниже 10 °С, остальных — не ниже 20 °С.

Трансформатор считается маслоплотным, если осмотром после испытания течь масла не обнаружена.

10. Проверка устройств охлаждения.

Режим пуска и работы охлаждающих устройств должен соответствовать указаниям завода-изготовителя.

11. Проверка средств защиты масла.

Производится в соответствии с указаниями завода-изготовителя.

12. Фазировка трансформаторов.

Должно иметь место совпадение по фазам.

13. Испытание трансформаторного масла.

Свежее масло перед заливкой вновь вводимых трансформаторов, прибывающих без масла, должно быть испытано по показателям пп. 1-6, 7-12 табл. 1.8.33.

У трансформаторов напряжением до 35 кВ масло рекомендуется испытывать по показателям пп. 1-7 табл. 1.8.33, допускается не производить испытания по пп. 3, 6 и 7 табл. 1.8.33.

У трансформаторов напряжением 110 кВ и выше масло испытывается по пп. 1-7 табл. 1.8.33, а у трансформаторов с пленочной защитой масла — дополнительно по п. 10.

У трансформаторов с РПН масло из бака контактора устройства регулирования напряжения под нагрузкой испытывается в соответствии с инструкцией завода-изготовителя РПН.

Из герметизированных трансформаторов проба масла не отбирается.

У трансформаторов напряжением 110 кВ и выше, а также блочных трансформаторов собственных нужд, рекомендуется производить хроматографический анализ растворенных в масле газов.

Масло из трансформаторов, прибывающих на монтаж с маслом при наличии удовлетворяющих нормам показателей заводского испытания, проведенного не более чем за 6 месяцев до включения трансформатора в работу, разрешается испытывать только по показателям пп. 1 и 2 табл. 1.8.33.

У трансформаторов мощностью до 630 кВА проверку масла допускается производить только по пп. 1 и 5 (визуально) табл. 1.8.33.

14. Испытание включением толчком на номинальное напряжение.

В процессе 3-5-кратного включения трансформатора на номинальное напряжение не должны иметь место явления, указывающие на неудовлетворительное состояние трансформатора.

Трансформаторы, смонтированные по схеме блока с генератором, рекомендуется включать в сеть подъемом напряжения с нуля.

15. Испытание вводов.

Следует производить в соответствии с 1.8.33.

16. Испытание встроенных трансформаторов тока.

Следует производить в соответствии с 1.8.17.

 

1.8.17. Измерительные трансформаторы тока

 

1. Измерение сопротивления изоляции.

Измерение сопротивления основной изоляции трансформаторов тока, изоляции измерительного конденсатора и вывода последней обкладки бумажно-масляной изоляции конденсаторного типа производится мегаомметром на 2500 В.

Измерение сопротивления вторичных обмоток и промежуточных обмоток каскадных трансформаторов тока относительно цоколя производится мегаомметром на 1000 В.

Измеренные значения сопротивления изоляции должны быть не менее приведенных в табл. 1.8.13.

У каскадных трансформаторов тока сопротивление изоляции измеряется для трансформатора тока в целом. При неудовлетворительных результатах таких измерений сопротивление изоляции дополнительно измеряется по ступеням.

 

Таблица 1.8.13

 

Сопротивление изоляции каскадных трансформаторов тока

 






Класс напряжения, кВ

Допустимые
сопротивления изоляции, МОм, не менее

Основная изоляция

Измерительный вывод

Наружные слои

Вторичные обмотки*

Промежуточные обмотки

3-35

1000

50(1)

110-220

3000

50(1)

330-750

5000

3000

1000

50(1)

1

 

* Сопротивления изоляции вторичных обмоток приведены: без скобок — при отключенных вторичных цепях, в скобках — с подключенными вторичными цепями.

 

2. Измерение tg d изоляции.

Измерения tg d трансформаторов тока с основной бумажно-масляной изоляцией производятся при напряжении 10 кВ.

Измеренные значения, приведенные к температуре 20°С, должны быть не более указанных в табл. 1.8.14.

У каскадных трансформаторов тока tg d основной изоляции измеряется для трансформатора тока в целом. При неудовлетворительных результатах таких измерений tg d основной изоляции дополнительно производится измерение по ступеням.

3. Испытание повышенным напряжением промышленной частоты 50 гц.

3.1. Испытание повышенным напряжением основной изоляции.

Значения испытательного напряжения основной изоляции приведены в табл. 1.8.14. Длительность испытания трансформаторов тока — 1 мин.

Допускается проведение испытаний трансформаторов тока совместно с ошиновкой. Трансформаторы тока напряжением более 35 кВ не подвергаются испытаниям повышенным напряжением.

3.2. Испытание повышенным напряжением изоляции вторичных обмоток.

Значение испытательного напряжения для изоляции вторичных обмоток вместе с присоединенными к ним цепями принимается равным 1 кВ.

Продолжительность приложения испытательного напряжения — 1 мин.

 

 

 

 

 

Таблица 1.8.14

 

Значения tg d основной изоляции трансформаторов тока

 





Тип изоляции

Предельные значения tg d %, основной изоляции трансформаторов
тока на номинальное

3-15

20-35

110

220

330

500

750

Бумажно-бакелитовая

3,0

2,5

2,0

Основная бумажно-масляная и конденсаторная
изоляция

2,5

2,0

1,0

Не более 150% от
измеренного на заводе,

но не выше 0,8.

 

4. Снятие характеристик намагничивания.

Характеристика снимается повышением напряжения на одной из вторичных обмоток до начала насыщения, но не выше 1800 В.

При наличии у обмоток ответвлений характеристика снимается на рабочем ответвлении.

Снятая характеристика сопоставляется с типовой характеристикой намагничивания или с характеристиками намагничивания исправных трансформаторов тока, однотипных с проверяемыми.

Отличия от значений, измеренных на заводе-изготовителе, или от измеренных на исправном трансформаторе тока, однотипном с проверяемым, не должны превышать 10 %.

Допускается снятие только трех контрольных точек.

5. Измерение коэффициента трансформации.

Отклонение измеренного коэффициента от указанного в паспорте или от измеренного на исправном трансформаторе тока, однотипном с проверяемым, не должно превышать 2 %.

6. Измерение сопротивления вторичных обмоток постоянному току.

Измерение проводится у трансформаторов тока на напряжение 110 кВ и выше.

Отклонение измеренного сопротивления обмотки постоянному току от паспортного значения или от измеренного на других фазах не должно превышать 2 %. При сравнении измеренного значения с паспортными данными измеренное значение сопротивления должно приводиться к заводской температуре. При сравнении с другими фазами измерения на всех фазах должны проводиться при одной и той же температуре.

7. Испытания трансформаторного масла.

При вводе в эксплуатацию трансформаторов тока трансформаторное масло должно быть испытано в соответствии с требованиями табл. 1.8.33 пп. 1¸6, а у герметичных и по п. 10.

У маслонаполненных каскадных трансформаторов тока оценка состояния трансформаторного масла в каждой ступени проводится по нормам, соответствующим рабочему напряжению ступени.

8. Испытание встроенных трансформаторов тока.

Производится по пп. 1, 3.2, 4¸6. Измерение сопротивления изоляции встроенных трансформаторов тока производится мегаомметром на напряжение 1000 В.

Измеренное сопротивление изоляции без вторичных цепей должно быть не менее 10 МОм.

Допускается измерение сопротивления изоляции встроенных трансформаторов тока вместе со вторичными цепями. Измеренное сопротивление изоляции должно быть не менее 1 МОм.

 

1.8.18. Измерительные трансформаторы напряжения

 

1. Электромагнитные трансформаторы напряжения.

1.1. Измерение сопротивления изоляции обмоток.

Измерение сопротивления изоляции обмотки ВН трансформаторов напряжения производится мегаомметром на напряжение 2500 В.

Измерение сопротивления изоляции вторичных обмоток, а также связующих обмоток каскадных трансформаторов напряжения производится мегаомметром на напряжение 1000 В.

Измеренные значения сопротивления изоляции должны быть не менее приведенных в табл. 1.8.15.

1.2. Испытание повышенным напряжением частоты 50 Гц.

Испытание изоляции обмотки ВН повышенным напряжением частоты 50 Гц проводятся для трансформаторов напряжения с изоляцией всех выводов обмотки ВН этих трансформаторов на номинальное напряжение.

Значения испытательного напряжения основной изоляции приведены в табл. 1.8.15.

Длительность испытания трансформаторов напряжения — 1 мин.

Значение испытательного напряжения для изоляции вторичных обмоток вместе с присоединенными к ним цепями принимается равным 1 кВ.

Продолжительность приложения испытательного напряжения — 1 мин.

 

Таблица 1.8.15

 

Сопротивление изоляции трансформаторов напряжения

 





Класс напряжения, кВ

Допустимые
сопротивления изоляции, МОм, не менее

Основная изоляция

Вторичные обмотки*

Связующие обмотки*

3-35

100

50(1)

1

110-500

300

50(1)

1

 

* Сопротивления изоляции вторичных обмоток приведены:

без скобок — при отключенных вторичных цепях;

в скобках — совместно с подключенными вторичными цепями.

 

1.3. Измерение сопротивления обмоток постоянному току.

Измерение сопротивления обмоток постоянному току производится у связующих обмоток каскадных трансформаторов напряжения.

Отклонение измеренного сопротивления обмотки постоянному току от паспортного значения или от измеренного на других фазах не должно превышать 2 %. При сравнении измеренного значения с паспортными данными измеренное значение сопротивления должно приводиться к температуре заводских испытаний. При сравнении с другими фазами измерения на всех фазах должны проводиться при одной и той же температуре.

1.4. Испытание трансформаторного масла.

При вводе в эксплуатацию трансформаторов напряжения масло должно быть испытано в соответствии с требованиями табл. 1.8.32 пп. 1¸6.

У маслонаполненных каскадных трансформаторов напряжения оценка состояния масла в отдельных ступенях проводится по нормам, соответствующим рабочему напряжению ступени.

2. Емкостные трансформаторы напряжения.

2.1. Испытание конденсаторов делителей напряжения.

Испытание конденсаторов делителей напряжения проводятся в соответствии с требованиями раздела 1.8.27.

2.2. Измерение сопротивления изоляции электромагнитного устройства.

Измерение сопротивления изоляции обмоток проводится мегаомметром на 2500 В.

Сопротивление изоляции не должно отличаться от указанного в паспорте более чем на 30 % в худшую сторону, но составлять не менее 300 МОм.

2.3. Испытание электромагнитного устройства повышенным напряжением частоты 50 Гц.

Испытаниям подвергается изоляция вторичных обмоток электромагнитного устройства.

Испытательное напряжение — 1,8 кВ.

Длительность приложения напряжения — 1 мин.

2.4. Измерение сопротивления обмоток постоянному току.

При вводе в эксплуатацию измерение сопротивления обмоток постоянному току производится на всех положениях переключающего устройства.

Измеренные значения, приведенные к температуре при заводских испытаниях, не должны отличаться от указанных в паспорте более чем на 5 %.

2.5. Измерение тока и потерь холостого хода.

Измерение тока и потерь холостого хода производится при напряжениях, указанных в заводской документации.

Измеренные значения не должны отличаться от указанных в паспорте более чем на 10 %.

2.6. Испытание трансформаторного масла из электромагнитного устройства.

Значение пробивного напряжения масла должно быть не менее 30 кВ.

При вводе в эксплуатацию свежее сухое трансформаторное масло для заливки (доливки) электромагнитного устройства должно быть испытано в соответствии с требованиями табл. 1.8.33 пп. 1¸6.

2.7. Испытание вентильных разрядников.

Проводятся согласно указаниям раздела 1.8.31.

 

1.8.19. Масляные выключатели

 

1. Измерение сопротивления изоляции:

а) подвижных и направляющих частей, выполненных из органических материалов. Производится мегаомметром на напряжение 2500 В.

Сопротивление изоляции не должно быть меньше значений, приведенных ниже:

 



Номинальное напряжение выключателя, кВ

3-10

15-150

220-500

Сопротивление изоляции, МОм

1000

3000

5000

 

б) вторичных цепей, электромагнитов включения и отключения и т. п. Производится в соответствии с 1.8.37.

Приведение R и Rx к 20 градусам Цельсия

Так как мой блог читают “дети”, то вначале пару слов про сопротивление изоляции и сопротивление постоянному току. Вроде и похожие вещи, но на деле абсолютно разные. В чем же их схожесть и различия.

Обмотка электрической машины или кабель имеет токопроводящую жилу покрытую изоляцией, которая защищает окружающих от тока и сам кабель или жилу от повреждения вследствие короткого замыкания. При измерении Rx (сопротивления изоляции) мы подаем постоянное напряжение мегаомметром на голую жилу и определяем отношение поданного напряжения к величине тока утечки. Чем хуже изоляция, тем значение Rx ближе к нулю и тем больший ток утечки. Тут вроде все логично. Ток утечки убегает через изоляцию и чем она хуже, тем ток больше. Если Вам все понятно, тогда вопрос: куда убегает ток при измерении сопротивления изоляции голой шины? Значение сопротивления изоляции обычно должно быть больше нормируемой величины, что будет говорить о том, что изоляция в порядке и не устарела, или другими словами — оборудование пригодно к работе.

Сопротивление постоянному току измеряется либо по схеме амперметр-вольтметр, либо с помощью специального прибора — микроомметра. Сопротивление измеряется как отношение разности напряжения на концах измеряемого участка к току на этом участке. Закон Ома, в общем. То есть чем ближе у нас величина сопротивления к нулю, тем лучше наш проводник проводит электрический ток. А если провод оборван, то значение сопротивления равно бесконечности. Значение сопротивления постоянному току обычно сравнивают с заводскими значениями и между собой. Если с течением времени значение резко изменяется в какую-либо сторону, стоит задуматься о возможном дефекте.

Значения сопротивления изоляции и сопротивления постоянному току для разного оборудования нормируется и описывается в технической документации и нормах испытания электрооборудования. Для каждого оборудования это своя величина и это отдельная тема, которая подробнее раскрывается в других материалах на сайте.

Порою, необходимо сравнивать полученные значения R или Rx, замеренные в ходе работы, с заводскими значениями. Так можно выявить изменение в большую или меньшую сторону, что будет давать возможность говорить о состоянии оборудования — пригодно оно для работы, или же мы становимся свидетелями зарождающегося дефекта. Загвоздка состоит в том, что сопротивление зависит от различных внешних условий. Поэтому сравниваемые величины необходимо привести к одному значению температуры. В советских паспортах на оборудование встречались заводские данные, приведенные к температурам 20 или 15 градусов цельсия. В случае с иностранным (китайским, европейским) оборудованием иногда приходится приводить к температуре в 75 градусов. Впервые казалось чем-то необычным, но потом привыкаешь и молча пересчитываешь.

Приведение сопротивления постоянному току к нужной температуре

Теперь непосредственно к формулам приведения к температуре. Значит, начнем с формул для приведения сопротивления постоянному току к требуемой величине. Смысл такой: сопротивления при разных температурах прямо пропорциональны величинам данных температур. Формула следующая:

R(t1)/R(t2)=(K+t1)/(K+t2)

K для меди равно 235, для Al — 245.

при приведении к 15 градусам для медного проводника, например:

R15=250*R(t2)/(235+t2)

Тут всё просто: при проведении замеров омиков, померял температуру, записал данные. Потом уже на базе за компом и кофе, или же сразу на объекте на мобилке, пересчитал и привел к заводским по этой формуле.

Пересчет сопротивления изоляции к требуемой температуре

Пересчет сопротивления изоляции в общем случае. Данное математическое упражнение не носит такой распространенный характер, как в случае с омиками. Для Rx обычно просто записывают значение в мегаомах или их производных и значение коэффициента абсорбции. Но раз есть методика, грех не упомянуть её. Значит замерили при температуре 21,7, а необходимо привести допустим к 30 градусам по Цельсию. На помощь приходит следующая формула:

Кроме возведения в степень, отличную от двух, в данной формуле трудность вызывает определение коэффициента альфа. Альфа — температурный коэффициент сопротивления. Данный коэффициент имеется как у проводников, так и у изоляционных материалов. Но в контексте данной статьи больший смысл будет иметь приведение значений альфа для материалов, из которых изготавливают изоляцию силовых машин.

Вот некоторые значения, которые удалось раздобыть из открытых источников. Перепроверьте перед употреблением.

Пересчет сопротивления изоляции кабельных линий. Если мы имеем дело с кабелями и нужно произвести пересчет сопротивления изоляции кабеля к требуемой температуре, то в заводских инструкциях или ГОСТах даются таблицы, где приводятся значения переводных коэффициентов. С помощью этих переводных коэффициентов можно пересчитать Rx к требуемой величине. Данные коэффициенты получаются опытным путем на заводе-изготовителе. Приведем данные из ГОСТ 3345-76. В котором описано, что R20=Rt*K. В данной таблице описываются кабели с изоляцией из полиэтилена, пропитанной бумаги и резины.

В таблице берется значение коэффициента, которое соответствует температуре, при которой производились измерения. И затем это значение умножается на значение сопротивления изоляции. В итоге получается величина Rx, приведенная к 20 градусам Цельсия. В данном госте описаны коэффициенты пересчета для диапазона температур от плюс 5 до 35 градусов по Цельсию. При других температурах потребуется использовать другие способы пересчета. Самый лучший вариант — это измерения при температуре, соответствующей заводским измерениям. Но это идеальный вариант и редко случается. А если Вам выдали разные протоколы и там везде двадцать градусов, то задумайтесь, а не обманывает ли Вас подрядчик.

Пересчет сопротивления изоляции силового трансформатора. В некоторых методиках проведения измерений на силовых трансформаторах присутствует коэффициент приведения сопротивления изоляции к требуемой температуре. Однако, здесь слоев меньше и знать нужно следующее: есть распространенные классы изоляции. Изоляция класса А и изоляция класса В. И для них справедливы следующие правила.

Rx класса А при снижении температуры на 10 градусов становится больше в 1,5 раза.

Rx класса В при увеличении температуры на 18 градусов становится меньше в 2,0 раза.

Справедливы и обратные утверждения. Для более наглядного представления, на примере изоляции класса А, введем коэффициент изменения Rx при изменении температуры и сведем эти данные в табличку.

Разность температур 1 2 3 4 5
Коэффициент изменения R60 1,04 1,08 1,13 1,17 1,22
10 15 20 25 30
1,50 1,84 2,25 2,75 3,40

В общем, существуют способы пересчета сопротивления изоляции электрооборудования к требуемой величине. В этом могут помочь формулы или таблицы, представленные в паспортах или ГОСТах на данное оборудование. В случае с таблицами, где приведены коэффициенты для пересчета, нужно внимательно смотреть к какому именно оборудованию относятся эти таблицы. Так как существуют нюансы, и всегда необходимо быть начеку. В конце желаю, чтобы у Вас всегда “омики бились”.

Самое популярное


Измерение сопротивления постоянному току — ООО ПРОМТЕХАВТОМАТИЗАЦИЯ

Измерение сопротивления постоянному току широко применяется при всех пусконаладочных работах с целью выявления целостности токоведущих цепей машин и трансформаторов, обнаружения обрывов в параллельных цепях и металлических витковых замыканий в катушках, проверки качества паек и правильности положения переключателей трансформаторов и других случаях.

По данным замеров величины сопротивления постоянному току определяется средняя температура обмоток трансформаторов и роторов электрических машин при тепловых испытаниях, а также подсчитываются активные потери в опытах короткого замыкания мощных трансформаторов. Измерение величины сопротивления обмоток постоянному току производится одним из следующих методов:

  • методом электрического моста;
  • методом амперметра и вольтметра;
  • методом микрометра.

Выбор того или иного метода определяется требуемой точностью измерения, величиной измеряемого сопротивления, классом точности имеющихся измерительных приборов.

Измерения сопротивления постоянному току методом электрического моста

Мостовые методы применяются главным образом при лабораторных испытаниях, где требуется высокая точность, и обладают большим преимуществом перед всеми остальными методами измерения сопротивлений постоянному току. Мосты могут быть составлены из отдельных магазинов сопротивлений, точность подгонки которых обычно значительно выше точности очень хороших стрелочных приборов.

При замерах сопротивлений мостовыми методами может быть достигнута высокая точность порядка 0,001%. Кроме того, точность мостовых схем хорошо и надолго сохраняется, тогда как точность стрелочных приборов легко может быть понижена, например при перегрузке, неправильной транспортировке, неправильном включении или отключении. По этим причинам мостовые схемы нашли свое широкое применение там, где требуется более точное определение абсолютной величины сопротивления. Например, при определении сопротивлений обмоток крупных машин, генераторов, трансформаторов и другого электрооборудования, с целью выявления нарушения контактов, целостности обмотки, наличия в ней витковых замыканий и т.д. В настоящее время цифровые приборы лишены описанных выше недостатков стрелочных приборов, поэтому мостовые методы по распространенности уступают цифровым методам измерений.

Измерения сопротивления постоянному току методом амперметра и вольтметра.

Этот способ применяется в современных цифровых приборах. При использовании стрелочных приборов он является менее точным по сравнению с методом электрического моста.

Особенно удобно использовать эту методику для измерения сопротивлений, находящихся под напряжением, а также тогда, когда требуется измерить в рабочем режиме сопротивление, значительно меняющее свою величину от нагревания вследствие нагрузки.

Точность измерений при этом способе определяется суммой погрешностей вольтметра и амперметра. Если оба прибора применяются класса 0,5, то общая погрешность измерения может доходить до 1% измеренной величины, а при классе точности 1 ‒ 2% и т.д.

Измерение методом амперметра-вольтметра основано на законе Ома:

где R ‒ измеренное сопротивление проводника в холодном состоянии, Ом;

U ‒ напряжение вольтметра, В;

I ‒ ток, измеренный амперметром, а.

При измерении сопротивлений по методу амперметра и вольтметра возможны две основные схемы включения приборов (рисунок 1, а, б). При рассмотрении обеих схем можно легко установить, что при вычислении измеренного сопротивления по закону Ома без применения поправок метод даст лишь приближенное значение сопротивления. Более точные измерения можно произвести с введением поправок, учитывающих собственное сопротивление приборов:

где Rв и Rа ‒ внутренние сопротивления вольтметра и амперметра, Ом.

В случае применения схемы по рисунку 1, а амперметр учтет ток, проходящий по вольтметру, а по рис 1,б вольтметр учтет падение напряжения не только в измеряемом сопротивлении, но и в обмотке амперметра. Если вам необходимо провести измерения, воспользуйтесь услугами электролаборатории нашей фирмы

Измерение сопротивления постоянного тока — Статьи

Общие положения.

Данная Методика предназначена для производства измерений сопротивлений постоянному току обмоток электрических машин, пускорегулирующих устройств, силовых и измерительных трансформаторов, контактов коммутационных аппаратов и обмоток электромагнитов управления, разъемных и болтовых соединений сборных шин распредустройств при приемо-сдаточных испытаниях электроустановок номинальным напряжением до 10 кВ, предусмотренных главой 1.8 “Нормы приемо-сдаточных испытаний” Правил устройства электроустановок. Работы по данной Методике выполняются персоналом наладочной бригады, допущенным к работам в соответствии с Положением о передвижной электролаборатории.

  1. Описание и подготовка микроомметра типа к измерениям.

Для измерения сопротивлений постоянному току применяется микроомметр типа MMR-600, предназначенный для измерения малых активных сопротивлений сварных и эквипотенциальных соединений, зажимов, клемм, соединителей, электрических нагревательных  элементов, сварных рельсов, кабелей и проводов, двигателей и обмоток трансформаторов, низкоомных катушек сопротивления и др. в диапазоне от 1 мкОм до 200 Ом током до 10 А.

Измерение активного сопротивления R








Диапазон

Разрешение

Абсолютная


погрешность

Напряжение


для диапа-


зона

Рабочий


ток

0…1,999 мОм

1 мкОм

± (0,25 % R + 4 мкОм)

20 мВ

10 A

2,00. ..19,99 мОм

10 мкОм

± (0,25 % R + 20 мкОм)

20 мВ

1 A

20,0…199,9 мОм

0,1 мОм

± (0,25 % R + 0,2 мОм)

20 мВ

0,1 A

0,200…1,999 Ом

1 мОм

± (0,25 % R + 2 мОм)

20 мВ

10 мА

2,00. ..19,99 Ом

10 мОм

± (0,25 % R + 20 мОм)

20 мВ

1 мА

20,0…199,9 Ом

0,1Ом

± (0,25 % R + 0,2 Ом)

20 мВ

0,1 мА

входное полное сопротивление вольтметра: ≥200 кОм

Изложенные в таблице погрешности касаются измерения двунаправленным током и принадлежат к среднему значению двух измерений согласно формуле:

R = (R+RR) / 2

Для измерения однонаправленным током, а также для измерений индуктивных объектов с сокращенным временем измерения изложенные точности не гарантированы. где RF – активное сопротивление при установленном направлении тока „вперед”, a RR – активное сопротивление при установленном направлении тока „назад”.

5.1 Силовые трансформаторы.

Измерение сопротивления обмоток постоянному току. Производится на всех ответвлениях, если для этого не потребуется выемки сердечника. Сопротивление должно отличаться не более чем на 2% от сопротивления, полученного на таком же ответвлении других фаз, или от данных завода-изготовителя.

5.2 Измерительные трансформаторы.

Измерение сопротивления обмоток постоянному току производится у первичных обмоток трансформаторов тока напряжением 10 кВ, имеющих переключающее устройство. Отклонение измеренного значения сопротивления обмотки от паспортного или от сопротивления обмоток других фаз не должно превышать 2%.

 

5.3 Электрические машины.

5.5.1. Машины постоянного тока.

Измерение сопротивления постоянному току.

а) Обмоток возбуждения. Значение сопротивления должно отличаться от данных завода-изготовителя не более чем на 2%;

б) Обмотки якоря (между коллекторными пластинами). Значения сопротивлений должны отличаться одно от другого не более чем на 10% за исключением случаев, когда закономерные колебания этих величин обусловлены схемой соединения обмоток;

в) Реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значения сопротивлений должны отличаться от данных завода-изготовителя не более чем на 10%.

5.5.2. Электродвигатели переменного тока.

Измерение сопротивления постоянному току.

а) Обмоток статора и ротора. Производиться при мощности электродвигателей 300кВт и более.

Измеренные сопротивления обмоток различных фаз должны отличаться друг от друга или от заводских данных не более чем на 2%;

б) реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значение сопротивления должно отличаться от паспортных данных не более чем на 10%.

5.5.3. Синхронные машины.

Допустимое отклонение сопротивления постоянному току.

Таблица 2.





Испытуемый объект

Норма

Обмотка статора (измерение производить для каждой фазы или ветви в отдельности)

Измеренные сопротивления в практически холодном состоянии обмоток различных фаз не должны отличаться одно от другого более чем на 2%. Вследствие конструктивных особенностей (большая длина соединительных дуг и прочее) расхождение между сопротивлениями ветвей у некоторых типов генераторов может достигать 5%.

Обмотка ротора

Измеренное сопротивление обмоток не должно отличаться от данных завода изготовителя более чем на 2%. У явнополюсных роторов измерение производится для каждого полюса в отдельности или попарно.

Резистор гашения поля, реостаты возбуждения

Сопротивление не должно отличаться от данных завода-изготовителя более чем на 10%.

  1. Безопасные приемы выполнения работы

6.1. Перед работой  должны быть оформлены организационные и выполнены технические мероприятия, согласно требований раздела XXXIX ПОТЭУ.

6.3. Измерения сопротивления постоянному току лабораторией в электроустановках, где введен эксплуатационный режим, оформляются нарядом-допуском. Организационные и технические мероприятия выполняются эксплуатационным персоналом.

  1. Требования к квалификации персонала

К работе по измерению сопротивлений постоянному току допускаются лица электротехнического персонала лаборатории не моложе 18 лет, обученные и аттестованные по данной методике, прошедшие проверку знаний по ПОТЭУ и ПТЭЭП и изучившие работу приборов, знающие схему электроустановки; обеспеченные спецодеждой, средствами защиты, инструментом.

Измерения проводит бригада из двух человек с квалификационной группой не ниже III . В состав бригады могут включаться лица со второй группой по ПТБ для выполнения подготовительных работ:

  1. Оформление результатов измерений.

Результаты измерений оформляются протоколом в соответствии ГОСТ ИСО/МЭК 17025-2009 Группа Т51, ГОСТ Р 50571.16-2007 с учетом погрешности используемого предела измерений.

Протокол должен отражать все вопросы, предписанные  ГОСТ ИСО/МЭК 17025-2009 п. 5.10.2, п.5.10.3 и приложением G ГОСТ Р 50571.16-2007 часть 6 “Испытания” гл.61 “Приемо-сдаточные испытания”.

  1. Оформление заключения о состоянии электроустановки и соответствии или несоответствии ее требованиям НТД.

Заключение о соответствии или не соответствии результатов измерений принимается на основании анализа измеренного значения с требованиями ПУЭ гл.1.8., ПТЭЭП приложение 3, а также  с данными предприятия изготовителя.

Объяснение испытания сопротивления обмотки трансформатора

Это руководство представляет собой введение в методы и процедуры испытания сопротивления обмотки трансформатора. Фото: TestGuy

Измерение сопротивления обмотки — важный диагностический инструмент для оценки возможных повреждений трансформаторов в результате плохой конструкции, сборки, обращения, неблагоприятных условий окружающей среды, перегрузки или плохого обслуживания.

Основная цель этого испытания — проверить большие различия между обмотками и обрыв в соединениях. Измерение сопротивления обмоток трансформатора гарантирует, что каждая цепь подключена правильно и все соединения надежны.

Сопротивление обмотки трансформаторов изменится из-за короткого замыкания витков, ослабленных соединений или ухудшения контактов в переключателях ответвлений. Независимо от конфигурации, измерения сопротивления обычно производятся между фазами, и показания сравниваются друг с другом, чтобы определить, приемлемы ли они.

Измерения сопротивления обмотки трансформатора получают путем пропускания известного постоянного тока через испытуемую обмотку и измерения падения напряжения на каждой клемме (закон Ома).Современное испытательное оборудование для этих целей использует мост Кельвина для достижения результатов; Вы можете представить себе набор для измерения сопротивления обмоток как очень большой омметр с низким сопротивлением (DLRO).


Содержание руководства


Будьте осторожны при тестировании

Перед проведением испытания сопротивления обмотки трансформатора важно выполнить все предупреждения по технике безопасности и принять соответствующие меры. Убедитесь, что все тестируемое оборудование правильно заземлено, и относитесь ко всему высоковольтному силовому оборудованию как к находящемуся под напряжением, пока не будет доказано обратное с помощью надлежащих процедур блокировки / маркировки.

Во время испытания важно не отключать провода тока или напряжения, пока ток все еще течет через трансформатор. Это приведет к возникновению чрезвычайно высокого напряжения в точке обрыва тока, что может привести к возникновению смертельного напряжения.


Подключение тестового набора

Оборудование для испытания сопротивления обмотки доступно в различных стилях в зависимости от конкретных приложений. Испытательный комплект, используемый для силового трансформатора, будет сильно отличаться от комплекта, разработанного для небольших измерительных трансформаторов.Независимо от типа, измерители сопротивления обмоток всегда оснащены токовым выходом, измерителем напряжения и измерителем сопротивления. Фото: Testguy

.

Как первичные, так и вторичные выводы трансформатора должны быть изолированы от внешних подключений, а измерения должны выполняться на каждой фазе всех обмоток. Подключение испытательного оборудования производить в следующем порядке:

  1. Заземление Убедитесь, что трансформатор сначала заземлен непосредственно на землю местной станции, а затем подключите заземление испытательного комплекта.
  2. Принадлежности Подключайте любые необходимые принадлежности, такие как пульты дистанционного управления, сигнальный маяк, ПК и т. Д.
  3. Тестовые провода Отключите измерительные провода от тестируемого устройства, подключите провода тока и напряжения к испытательному комплекту и проверьте герметичность всех соединений.
  4. Подключение к трансформатору Для каждой конфигурации трансформатора требуются разные тестовые соединения, некоторые примеры приведены в следующем разделе. Особое внимание следует уделить , чтобы не допустить выпадения проводов во время тестирования или подключения проводов друг к другу или слишком близко друг к другу. Выводы напряжения всегда должны быть размещены внутри (между) токоподводами и трансформатором.
  5. Входная мощность Подключите испытательный комплект. Перед выполнением этого подключения убедитесь, что заземление источника питания имеет путь с низким сопротивлением к заземлению местной станции.

Подключение к тестируемому трансформатору

Для однофазных и простых конфигураций Delta-Wye можно использовать следующие соединения.Имейте в виду, что каждая конфигурация трансформатора отличается, и ваша конкретная настройка может не применяться к тому, что показано ниже. Для получения дополнительной информации обратитесь к руководству пользователя, поставляемому с вашим испытательным комплектом.

Пример однофазного трансформатора

Соединения для проверки сопротивления обмотки трансформатора — одиночная обмотка. Фото: TestGuy


Пример трехфазной обмотки треугольником

Соединения для проверки сопротивления обмотки трансформатора — трехфазная обмотка, треугольник. Фото: TestGuy

№ испытания. I + I- V1 + V1- V2 + V2-
A-фаза h2 ч3 h2 ч3
B-фаза ч3 h4 ч3 h4
C-фаза h4 h2 h4 h2

Пример трехфазной вторичной обмотки звездой

Соединения для проверки сопротивления обмотки трансформатора — трехфазная обмотка звездой. Фото: TestGuy

Тест № I + I- V1 + V1- V2 + V2-
A-фаза Х1 X0 Х1 X0
B-фаза X2 X0 X2 X0
C-фаза X3 X0 X3 X0

Пример испытания двойной обмотки (однофазный)

Чтобы сэкономить время при испытании двухобмоточных трансформаторов, можно одновременно проверять первичную и вторичную обмотки, используя схемы соединений, показанные ниже:

Соединения для проверки сопротивления обмотки трансформатора — двойная обмотка. Фото: TestGuy

Тест № I + Джемпер I- V1 + V1- V2 + V2-
1 h2 h3-X1 X3 h2 ч3 Х1 X2

Пример испытания двойной обмотки (трехфазный)

Соединения для проверки сопротивления двух обмоток трехфазного трансформатора.Фото: TestGuy

Тест № I + Джемпер I- V1 + V1- V2 + V2-
A-фаза h2 h3-X1 X0 h2 ч3 Х1 X0
B-фаза ч3 h4-X2 X0 ч3 h4 X2 X0
C-фаза h4 h2-X3 X0 h4 h2 X3 X0

Для сокращения времени насыщения сердечника перемычка, используемая для соединения обеих обмоток, должна быть подключена к противоположным полярностям трансформатора. Если положительный вывод тока подключен к положительному выводу первичной обмотки, испытательный ток возбуждения от первичной обмотки h3 перескакивает на положительный вывод вторичной обмотки X1.

Примечание: Если сопротивление между двумя обмотками больше, чем в 10 раз, может быть желательно получить более точные показания, протестировав каждую обмотку отдельно.


Пример трансформатора тока

Соединения для проверки сопротивления обмотки трансформатора тока.Фото: TestGuy


Измерение сопротивления обмотки

При измерении сопротивления обмотки следует наблюдать и записывать значение , когда значение сопротивления стабилизируется . Значения сопротивления сначала будут «дрейфовать» из-за индуктивности трансформатора, которая более характерна для больших обмоток, соединенных треугольником.

Для небольших трансформаторов дрейф длится всего несколько секунд; для однофазных трансформаторов высокого напряжения дрейф может длиться менее минуты; для больших трансформаторов необходимое время дрейфа может составлять пару минут и более.Любое изменение тока приведет к изменению значения сопротивления.


Сопротивление обмотки устройства переключения ответвлений

Многие силовые и распределительные трансформаторы оснащены переключателями ответвлений для увеличения или уменьшения коэффициента передачи в зависимости от напряжения питания. Поскольку изменение передаточного числа связано с механическим перемещением из одного положения в другое, каждый отвод следует проверять во время испытания сопротивления обмотки.

Во время планового обслуживания не всегда возможно проверить каждый отвод из-за ограничений по времени или других факторов.В таких случаях допустимо измерять сопротивление каждой обмотки только в обозначенном положении отвода.

Для ответвлений «без нагрузки» трансформатор должен разряжаться между переключениями ответвлений. Переключатели ответвлений и регуляторы напряжения «под нагрузкой» могут работать с включенным испытательным комплектом при переключении от ответвления к ответвлению, это не только экономит время, но также позволяет проверить функцию включения перед отключением переключателя ответвлений.


Результаты испытаний

Интерпретация результатов сопротивления обмотки обычно основана на сравнении каждого значения сопротивления с каждой соседней обмоткой на одном отводе.Если все показания находятся в пределах одного процента друг от друга, считается, что образец выдержал испытание.

Также можно проводить сравнения с исходными данными испытаний, измеренными на заводе, с использованием значений с поправкой на температуру, имея в виду, что испытания на сопротивление в полевых условиях не предназначены для дублирования протокола испытаний производителя, который, скорее всего, проводился в контролируемой среде на заводе. время изготовления.


Образец данных испытаний

В зависимости от размера тестируемой обмотки трансформатора показания сопротивления будут выражаться в омах, миллиомах или микромомах.В таблице ниже показано, как можно записать данные испытаний для простого трехфазного трансформатора 13,200–208 / 120 В с тремя положениями переключателя ответвлений без напряжения.

ОБМОТКИ ПОЛОЖЕНИЕ ОТВЕРСТИЯ СОПРОТИВЛЕНИЕ (МИЛЛИОМЫ)
h2-h3 1 750,3
h3-h4 1 749,8
h4-h2 1 748.5
h2-h3 2 731,8
h3-h4 2 731,4
h4-h2 2 729,4
h2-h3 3 714,6
h3-h4 3 714,3
h4-h2 3 712.3
X1-X0 НЕТ 0,3550
X2-X0 НЕТ 0,3688
X3-X0 НЕТ 0,3900

Температурная коррекция

Поскольку сопротивление зависит от температуры, при сравнении результатов для данных трендов необходимо использовать скорректированные значения. Очень важно оценить температуру обмотки во время измерения.

Если трансформатор имеет датчик температуры обмотки, используйте эти показания, в противном случае предполагается, что температура обмотки равна температуре масла. Если трансформатор измеряется без масла, температура обмотки обычно принимается такой же, как температура окружающего воздуха.

Измеренное сопротивление следует скорректировать на обычную температуру, например 75 ° C или 85 ° C, по следующей формуле:

где:

  • R C — скорректированное сопротивление
  • R M — это измеренное сопротивление
  • C F — поправочный коэффициент для меди (234.5) или алюминиевые (225) обмотки
  • C T — скорректированная температура (75C или 85C)
  • W T — температура обмотки (C) во время испытания

Размагничивание трансформатора

После завершения всех испытаний выполните операцию размагничивания трансформатора. Этот шаг очень важен для бесперебойной работы трансформатора при вводе в эксплуатацию.

Размагничивание трансформатора устраняет остаточный магнитный поток, вызванный пропусканием поляризованного постоянного тока через обмотки во время испытания сопротивления.Фото: Викимедиа.

Если операция размагничивания не выполняется, избыточный остаточный магнитный поток в сердечнике трансформатора может вызвать большие пусковые токи на первичной стороне, которые могут привести к срабатыванию защитных реле. Размагничивание трансформатора достигается пропусканием нескольких циклов пониженного тока через обмотку как в положительном, так и в отрицательном направлении (переменный постоянный ток).

Размагничивание необходимо выполнять только на одной обмотке после завершения всех испытаний сопротивления.При использовании современных испытательных комплектов с функцией размагничивания рекомендуется подключать провода как по току, так и по напряжению к обмотке на стороне высокого напряжения для процесса размагничивания.

Для трансформаторов тока выполните испытание на насыщение, чтобы размагнитить ТТ по завершении всех испытаний сопротивления обмоток.


Список литературы

Комментарии

Войдите или зарегистрируйтесь, чтобы комментировать.

С какой целью измеряется сопротивление обмотки трансформатора постоянному току?

Целью измерения сопротивления обмоток постоянного тока обмоток трансформатора является проверка качества сварки стыков обмоток и наличия коротких замыканий между обмотками; правильны ли положения контактов переключателей ответвлений напряжения и совпадают ли фактические положения ответвлений; есть ли обрыв выводных проводов или нет. Многожильные провода и обмотки сломаны.При капитальном ремонте трансформатора или после изменения положения ответвлений, или после короткого замыкания выхода из строя, необходимо измерить сопротивление обмотки постоянного тока обмотки вместе с вводом. Kingrun имеет серию высокоточных тестеров сопротивления обмоток постоянного тока, таких как JYR-10C, JYR-20S / 40S, а также портативный тестер сопротивления обмоток JYR-9310.

Метод измерения следующий:

(1) Метод измерения тока, напряжения. Также известный как метод падения напряжения, принцип заключается в пропускании постоянного тока через измеренное сопротивление, измерении падения напряжения на сопротивлении в соответствии с законом Ома для вычисления измеренного значения сопротивления.Поскольку внутреннее сопротивление амперметра и вольтметра влияет на результаты измерения, следует тщательно продумать способ их подключения к измерительной цепи.

(2) Метод уравновешенного моста. Это метод измерения сопротивления обмотки постоянного тока с использованием принципа балансировки моста. Обычно используемый уравновешенный мост имеет два типа мостов с одной и двумя плечами. При измерении сопротивления обмотки трансформатора постоянному току его следует проводить после отключения питания трансформатора и снятия провода высокого напряжения.Для крупномасштабных силовых трансформаторов большой емкости постоянная времени заряда τ последовательной цепи rl очень велика, поэтому для каждого измерения требуется много времени, чтобы ждать стабилизации показаний тока и вольтметра, поэтому эффективность работы очень низкая. , часто используются специальные инструменты (например, постоянного тока). Блок питания вместо блока питания в тесте, что может значительно сократить время тестирования. Стандарт для измерения сопротивления обмоток постоянного тока обмоток трансформаторов: Для трансформаторов мощностью более 1600 кВА разница между сопротивлением каждой фазной обмотки не должна превышать 2% от среднего значения трехфазной обмотки, и обмотки нейтрали не должно быть. точечная выводная линия.Разница между линиями не должна быть больше трехфазной. Среднее значение 1%, для трансформаторов мощностью 1600 кВА и ниже, разница между фазами обычно составляет не более 4% от трехфазного среднего значения, разница между линиями составляет обычно не более 2% от трехфазного среднего значения, по сравнению с предыдущей частью измеренного значения, его изменение не должно превышать 2%.

Тест сопротивления обмотки — Анализатор обмоток

Для чего это используется?

Испытание сопротивления обмотки используется для обнаружения обрывов обмоток, короткого замыкания на землю, неправильного подсчета витков, неправильного калибра проводов, резистивных соединений, круглых проводов в руке, которые не соединены в катушке, некоторых ошибок подключения, баланса сопротивления между фазами и в некоторых случаях закорочены витки.

Сопротивление обмотки является важным измерением, потому что другие тесты и измерения не обнаружат некоторых проблем, которые могут быть обнаружены при измерении сопротивления. Некоторые из них — проблемы с калибром проводов, резистивные соединения, а также перегоревшие или отсоединенные магнитные провода в руке.

Как это работает:

Испытания сопротивления обмотки — это измерение приложенного постоянного напряжения и тока к тестируемому устройству — DUT. По закону Ома сопротивление вычисляется анализатором обмоток в мкОм (микроОм) или в мОм (миллиОм).

Для трехфазного двигателя обычно выполняются 3 измерения сопротивления между фазами, а баланс или дисбаланс между 3 измерениями вычисляется и отображается вместе с измеренными значениями.

Для одиночных катушек, а иногда и для двигателей, измеренные сопротивления можно сравнивать со значением сопротивления вместо расчета баланса. Затем рассчитывается разница в процентах от заданного значения сопротивления.

Температурный поправочный коэффициент может автоматически применяться для корректировки измерения до стандартной температуры, поэтому результаты можно более точно отслеживать с течением времени с помощью анализатора обмотки.

Измерение сопротивления по 2- и 4-проводным схемам

Сопротивление можно измерить с помощью двух проводов, подключенных к ИУ. Этот тип измерения сопротивления будет включать выводы тестера при измерении сопротивления обмотки. Лучше измерение в четырех отведениях. Он устраняет сопротивление проводов и, как правило, является более точным.

Все измерения сопротивления обмоток, выполняемые с помощью тестеров двигателей Electrom Instruments, выполняются с помощью четырехпроводной системы. Для iTIG III модели D выводы являются выводами высокого напряжения, поэтому измерение сопротивления обмотки в микроомах может быть частью автоматической последовательности испытаний двигателя, включая испытания высоковольтным напряжением.

Пиковое измерение

> Home

Предстоящие тренинги и мероприятия

Из-за пандемии многие учебные мероприятия были заменены виртуальными. Пожалуйста, проверьте ссылки ниже, чтобы узнать о возможностях онлайн-обучения.

SELU Компьютерное обучение (CBT)

SEL записанные вебинары и предстоящие вебинары в прямом эфире

Doble Engineering обучающие вебинары

Survalent Technology онлайн-обучение

——————————————

Предстоящие отраслевые события

Весенний виртуальный семинар SEL «Быстрее, безопаснее, проще — технологии и инновации для электроэнергетических систем»

21 апреля 2021 г., виртуальный

NWPPA E&O Conference

27-29 апреля 2021 г., виртуальный

1-часовой веб-семинар SEL «PowerMAX для коммунальных предприятий — схемы корректирующих действий»

28 апреля 2021 г., виртуальный

SEL на виртуальной конференции по релейной защите технологий Джорджии

28-30 апреля 2021 г., виртуальный

Survalent SCADA: советы и передовые методы

7 мая 2021 г., виртуальный

Survalent динамическое регулирование напряжения и оптимизация напряжения / вар.

14 мая 2021 г., виртуальный

SurvalentOne SCADA System Level 2

17-21 мая 2021 г., виртуальный

Оценщик потока мощности и состояния распределения аварийного распределения

4 июня 2021 г., виртуальный

SEL на конференции по телекоммуникациям и технологиям UTC

21-25 июня 2021 г., Портленд, OR

Конференция и выставка IEEE 2022 PES T&D

25-28 апреля 2022 , Новый Орлеан

Пиковое измерение

> Home

Предстоящие тренинги и мероприятия

Из-за пандемии многие учебные мероприятия были заменены виртуальными. Пожалуйста, проверьте ссылки ниже, чтобы узнать о возможностях онлайн-обучения.

SELU Компьютерное обучение (CBT)

SEL записанные вебинары и предстоящие вебинары в прямом эфире

Doble Engineering обучающие вебинары

Survalent Technology онлайн-обучение

——————————————

Предстоящие отраслевые события

Весенний виртуальный семинар SEL «Быстрее, безопаснее, проще — технологии и инновации для электроэнергетических систем»

21 апреля 2021 г., виртуальный

NWPPA E&O Conference

27-29 апреля 2021 г., виртуальный

1-часовой веб-семинар SEL «PowerMAX для коммунальных предприятий — схемы корректирующих действий»

28 апреля 2021 г., виртуальный

SEL на виртуальной конференции по релейной защите технологий Джорджии

28-30 апреля 2021 г., виртуальный

Survalent SCADA: советы и передовые методы

7 мая 2021 г., виртуальный

Survalent динамическое регулирование напряжения и оптимизация напряжения / вар.

14 мая 2021 г., виртуальный

SurvalentOne SCADA System Level 2

17-21 мая 2021 г., виртуальный

Оценщик потока мощности и состояния распределения аварийного распределения

4 июня 2021 г., виртуальный

SEL на конференции по телекоммуникациям и технологиям UTC

21-25 июня 2021 г., Портленд, OR

Конференция и выставка IEEE 2022 PES T&D

25-28 апреля 2022 , Новый Орлеан

Тест сопротивления обмотки — Анализатор обмоток

Сопротивление обмотки

Сопротивление обмотки, сопротивление отрезка медных проводов или стержней от одного конца до другого, является мерой постоянного напряжения и тока и применения закона Ома следующим образом:

где R — сопротивление в Ом, V — приложенное напряжение в вольтах, а I — результирующий ток в амперах.

2-проводное и 4-проводное измерение

Сопротивление обмотки можно измерить двумя проводами от измерительного устройства, подключенного к каждому концу ИУ. В этом случае измеренное сопротивление будет включать сопротивление проводов от измерительного устройства к тестируемому устройству.

В нашем 4-проводном измерении сопротивления используются клещи Кельвина для повышения точности

При 4-проводном измерении 4 провода выходят из измерительного устройства и попарно подключаются к концам DUT с помощью так называемых зажимов Кельвина.Каждая пара имеет приводной вывод и сенсорный провод, а сопротивление «считывается» или измеряется от одного зажима Кельвина к другому. Другими словами, измеряется только сопротивление тестируемого устройства, сопротивление в выводах от измерительного устройства к тестируемому устройству устраняется. Следовательно, измерение сопротивления ИУ более точное.

4-проводное измерение сопротивления использует мост Кельвина или мост Уитстона для устранения сопротивления проводов в измерительном приборе.

Что делает Electrom Instruments

В серии тестеров и анализаторов обмоток

Electrom iTIG III используются высокоточные 4-проводные измерения сопротивления обмоток.Модели поставляются с измерениями, выполняемыми с помощью отдельного набора зажимов Кельвина или с помощью зажимов Кельвина, подключенных к выходным выводам высокого напряжения, используемым для испытаний на скачок постоянного тока и импульсных испытаний. Измерения могут производиться в миллиомах или микроомах от нескольких мкОм до 2 кОм.

Почему сопротивление обмотки является важным измерением

При измерении сопротивления обмотки могут быть обнаружены проблемы, не обнаруженные при других испытаниях и измерениях (кроме измерений импеданса), и поэтому это очень важно.Ниже приведены проблемы, которые можно найти.

Распространенное недоразумение

Распространенное заблуждение состоит в том, что при импульсном испытании всегда можно обнаружить выброс в двигателе с произвольной обмоткой. Это происходит, если есть короткое замыкание, замыкание между катушками или замыкание на землю. Но в ситуации, подобной той, что описана ниже, неисправность не будет обнаружена с помощью импульсного теста, потому что нет никаких изменений в индуктивности обмотки, мало, если вообще есть, в емкости обмотки, и испытание на выброс не зависит от сопротивления обмотки.См .: Что вызывает различия в волнах импульсных испытаний?

Пример частичного выброса: Четыре в руке (или четыре параллельных провода магнита на катушку), два перегорели, нет поворота на короткое замыкание и нет замыкания на массу. Два провода остались целы, поэтому индуктивность в катушке не изменилась.

Частичный выброс: четыре в руке, два вылетели, нет поворота на короткое замыкание и нет замыкания на землю.

Стандарты

Сопротивление обмотки можно сравнить с абсолютным числом Ом или долей Ом, если заданное сопротивление известно.Это также может быть сравнение фазных сопротивлений в трехфазном двигателе или генераторе с расчетом баланса (или дисбаланса).

Баланс обычно рассчитывается как максимальное отклонение в% от среднего, деленное на среднее значение трех измерений сопротивления обмоток, выполненных между фазами.

Температурная компенсация

Если измерения сопротивления обмоток необходимо сравнивать и отслеживать с течением времени, измерения необходимо компенсировать на температуру, если только температура не всегда одинакова.Медь, например, имеет температурный коэффициент около 0,0039 на градус Цельсия для умеренных температур. Это означает, что если температура изменится на 10 ° C, сопротивление изменится примерно на 4%.

Если важен баланс сопротивлений в фазах, то температурная компенсация не требуется, поскольку расчет баланса является соотношением и коэффициент компенсации выпадает.

РАЗНИЦА СОПРОТИВЛЕНИЯ ПОСТОЯННОМУ И ПОСТОЯННОМУ ТРАНСФОРМАТОРУ ОСНОВЫ И РУКОВОДСТВА |
ПРОЕКТИРОВАНИЕ ТРАНСМИССИОННЫХ ЛИНИЙ и СТУПИЦА ЭЛЕКТРОТЕХНИКИ

Основной
а вторичные обмотки идеального трансформатора имели бы нулевое сопротивление.Однако медная проволока имеет определенное сопротивление.

Следовательно,
первичная и вторичная обмотки имеют определенные значения сопротивления постоянному току. В
сопротивление обмотки катушки можно измерить омметром.

Этот DC
сопротивление нежелательно, потому что оно вызывает потери I2R в трансформаторе.
эксплуатации и снижает КПД трансформатора. Потеря мощности I2R из-за
к обмотке постоянного тока сопротивление первичной и вторичной катушек называется
потеря меди трансформатора.

Эта медь
потери можно уменьшить, намотав первичную и вторичную обмотки проводом большего диаметра.Конечно, сопротивление обмоток постоянному току нельзя уменьшить до нуля,
хотя он может быть настолько мал, что им можно пренебречь на практике.

Разрешите нам
учтите сопротивление переменного тока первичной и вторичной обмоток. Когда вторичный
идеальный трансформатор имеет разомкнутую цепь, первичная обмотка будет иметь бесконечное
реактивное сопротивление и не потребляет ток от источника переменного тока.

Однако
Практический трансформатор не имеет бесконечного первичного реактивного сопротивления, хотя этот
реактивное сопротивление очень высокое в случае эффективного трансформатора.Следовательно
первичная обмотка эффективного трансформатора потребляет небольшое количество переменного тока от
источник, когда вторичная обмотка разомкнута. Это называется током холостого хода.

Без нагрузки
ток не совсем на 90 ° по фазе с первичным напряжением, потому что
Практический трансформатор имеет потери в меди и в сердечнике. Эти потери потребляют
небольшое количество энергии от источника.

Следует
из предыдущего обсуждения, что если резистивная нагрузка подключена через
вторичные клеммы трансформатора, значительный переменный ток потребляется
начальный.Мы говорим, что подключение вторичной нагрузки вызвало
первичный, чтобы иметь более низкое значение сопротивления переменному току.

Обратите внимание, что
это сопротивление переменному току нельзя измерить омметром; значение переменного тока
сопротивление — это просто отношение напряжения к току. Это отношение первичного переменного тока
напряжение к синфазному первичному переменному току.

Даже
У идеального трансформатора значение сопротивления первичной обмотки переменному току зависит от
значение нагрузки, подключенной к клеммам вторичной обмотки.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *