Система зажигания транзисторная: Устройство контактно транзисторной системы зажигания

Устройство контактно транзисторной системы зажигания

Работа контактно транзисторной системы основана на использовании полупроводниковых приборов. Преимущества контактно транзисторной системы по сравнению с батарейной системой зажигания следующие:

  • через контакты прерывателя проходит небольшой ток управления транзистора, а не ток (до 8 А) первичной обмотки катушки зажигания (исключается эрозия и износ контактов).
  • Возрастает ток высокого напряжения и энергия искрового разряда (это позволяет увеличить зазор между электродами свечи зажигания, приводит к облегчению пуска двигателя, делает двигатель экономичнее).

Для начала давайте разберемся,

Что такое транзистор

Транзистор — это трехэлектродный прибор, изменяющий сопротивление от нескольких сот омов (транзистор закрыт) до нескольких долей ома (транзистор открыт).

Имея малое сопротивление во включенном состоянии и очень большое сопротивление в выключенном состоянии, транзистор вполне удовлетворяет требованиям предъявляемым к переключающим элементам. В контактно-транзисторной системе зажигания транзистор работает в режиме переключения (режим ключа).

Устройство контактно транзисторной системы ЗИЛ-130

Схема устройства контактно-транзисторной системы зажигания двигателя ЗИЛ-130 (стрелками указана цепь высокого напряжения):

а – расположение выводов на транзисторном коммутаторе; б – общая схема системы зажигания; 1 – транзисторный коммутатор ТК 102; 2 — резисторы; 3 – блок защиты транзистора; 4 – первичная обмотка; 5 – катушка зажигания; 6 – вторичная обмотка; 7 – свечи зажигания; 8 — крышка; 9 – ротор с электродом; 10 – распределитель зажигания; 11 –подвижный контакт; 12 – неподвижный контакт; 13 – кулачок прерывателя; 14 – добавочные резисторы СЭ 117; 15 – выключатель добавочного резистора; 16 — АКБ; 17 – выключатель зажигания; 18 — стабилитрон; 19 — диод; 20 – импульсный трансформатор; 21 – германиевый транзистор; К, Б, Э – электроды транзистора (коллектор, база, эмиттер).

Контактно транзисторная система ЗИЛ-130 состоит из транзисторного коммутатора1, катушки зажигания 5, свечей зажигания 7, распределителя 10, добавочных резисторов 14, выключателя 15 добавочного резистора, АКБ 16 и выключателя зажигания 17.

Катушка зажигания Б114 – маслонаполненная, выполнена по трансформаторной схеме, т.е. ее первичная и вторичная обмотки не соединены между собой и между ними существует только магнитная связь. Первичная обмотка катушки зажигания имеет два вывода, расположенные на карболитовой крышке. Один вывод обозначен буквой К, другой не имеет обозначения. Один вывод вторичной обмотки присоединен к корпусу, а другой соединен с проводом высокого напряжения, укрепленным в центральном отверстии крышки катушки зажигания. При установке катушки зажигания ее надежно соединяют с массой так, чтобы не было зазоров.

Добавочные резисторы СЭ 107, выполненные в виде двух спиралей, установлены в отдельном кожухе и имеют три вывода: ВК-Б, ВК и К. Спирали изготовлены из константановой проволоки, сопротивление которой при нагреве не изменяется, и в первичной обмотке катушки зажигания поддерживается постоянное напряжение.

Транзисторный коммутатор ТК 102 состоит из транзистора 21, импульсного трансформатора 20 и блока 3 защиты транзистора. В блок защиты входят резисторы 2, диод 19, стабилитрон 18 и конденсатор.

Все приборы коммутатора размещены в алюминиевом корпусе, имеющем ребра для лучшего отвода теплоты. У транзисторного коммутатора есть четыре вывода, обозначенные М, К, Р, и один без обозначения. Вывод М надежно соединяют с массой автомобиля многожильным неизолированным проводом, вывод К с концом первичной обмотки катушки зажигания, вывод без обозначения – со вторым концом первичной обмотки катушки зажигания, Р с подвижным контактом прерывателя.

Как работает контактно-транзисторная система зажигания?

Если выключатель зажигания 17 включен, а контакты прерывателя разомкнуты, то транзистор 21 заперт, так как нет тока в его цепи управления, т. е. в переходе эмиттер – база. Ток не проходит и между эмиттером и коллектором на массу, так как сопротивление этого перехода очень большое. При замыкании контактов прерывателя в цепи управления транзистора (эмиттер-база) проходит ток, в результате транзистор открывается. Сила тока управления невелика около (0,8 А) и уменьшается до 0,3 А с увеличением частоты вращения кулачка прерывателя. В контактно-транзисторной системе зажигания имеются две цепи низкого напряжения: цепь управления транзистора и цепь рабочего тока.

Цепь управления транзистора: положительный вывод АКБ 16 – выключатель зажигания 17 – выводы ВК-Б и К добавочных резисторов 14 – первичная обмотка 4 катушки зажигания 5 – вывод транзисторного коммутатора 1 – электроды перехода эмиттер – база транзистора 21 – первичная обмотка импульсного трансформатора 20 – вывод Р – контакты 11 и 12 прерывателя – масса – отрицательный вывод АКБ. При прохождении тока управления транзистора через переход эмиттер-база значительно уменьшается сопротивление эмиттер-коллектор, и транзистор открывается, включая цепь рабочего тока (7-8 А).

Цепь рабочего тока низкого напряжения

Положительный вывод АКБ 16 – выключатель зажигания 17 – выводы ВК-Б и К добавочных резисторов 14 – первичная обмотка 4 катушки зажигания 5 – вывод транзисторного коммутатора 1 – электроды перехода эмиттер-коллектор транзистора 21 – вывод М – масса – отрицательный вывод АКБ. При размыкании контактов прерывателя прекращается ток в цепи управления транзистора и значительно возрастает его сопротивление. Транзистор закрывается, выключая цепь рабочего тока низкого напряжения. Магнитный поток изменяющегося поля пересекает витки катушки зажигания, индуктируя во вторичной обмотке ЭДС, в результате чего возникает высокое напряжение (около 30000 В), а в первичной обмотке ЭДС самоиндукции (около 80-100 В).

Цепь высокого напряжения

Вторичная обмотка 6 катушки зажигания 5 ротор 9 распределителя 10 – свечи зажигания 7 ( в соответствии с порядком работы двигателя) – масса – вторичная обмотка 6 катушки зажигания 5.

Импульсный трансформатор необходим для быстрого запирания транзистора. При размыкании контактов прерывателя во вторичной обмотке импульсного трансформатора индуктируется ЭДС самоиндукции, направление которой противоположно направлению рабочего тока на переходе база-эмиттер. Благодаря этому быстро исчезает магнитное поле и ток в первичной обмотке 4 катушки зажигания 5. Диод 19 и стабилитрон 18 в прямом направлении – мимо первичной обмотки катушки зажигания.

Необходимо помнить, что контакты прерывателя пропускают и прерывают только силу тока управления транзистора 0,3-0,8 А. Если на них попало масло, образовалась масляная пленка или слой окиси, то ток управления транзистора не сможет пройти через контакты. Поэтому контакты прерывателя промывают бензином и следят за тем, чтобы они всегда были чистыми.

Контактно-транзисторная система зажигания.





Наиболее слабым звеном контактной (батарейной) системы зажигания являются контакты прерывателя. Ток высокого напряжения, проходя через контакты, приводит к их интенсивному износу, подгоранию, эрозии, в результате чего нарушается регулировка зазора и, как следствие, угол опережения зажигания, продолжительность и мощность искры.

Все это сказывается на надежности, долговечности системы зажигания и трудоемкости ее обслуживания.

Развитие электронной техники привело к созданию мощных полупроводниковых приборов, способных выполнять функции механических ключей, разрывающих электрическую цепь посредством управляющего тока небольшой величины, т. е. электронных реле. Такие реле, выполненные на транзисторах, пришли на смену механическим контактам, а батарейную систему зажигания сменила контактно-транзисторная.

В контактно-транзисторной системе зажигания механические контакты служат лишь для разрыва цепи, в которой протекает небольшой по величине ток, управляющий полупроводниковыми переходами транзистора, а транзистор, выполняя функцию реле, подает ток в первичную обмотку катушки зажигания. Благодаря этому удалось существенно повысить срок службы контактов и стабильность работы системы.

***

Работа контактно-транзисторной системы зажигания

Контактно-транзисторная система зажигания состоит, в основном, из тех же элементов, что и классическая батарейная, и отличается от неё наличием транзистора, резисторов и отсутствием конденсатора, ранее шунтировавшего контакты прерывателя.

Работает эта система зажигания следующим образом (рис. 1).

Когда контакты прерывателя Пр разомкнуты, транзистор V закрыт, и ток в первичной обмотке катушки зажигания отсутствует.

При замыкании контактов транзистор V открывается и через первичную обмотку катушки зажигания начинает протекать ток, нарастающий от нуля до некоторого значения, определяемого параметрами первичной цепи и временем, в течение которого контакты замкнуты. В сердечнике катушки накапливается электромагнитная энергия.

При размыкании контактов прерывателя транзистор V закрывается, и ток в первичной обмотке w1 катушки зажигания резко уменьшается.

В этом случае во вторичной обмотке возникает высокое напряжение w2, которое поступает на контакт распределителя и переносится к соответствующей свече зажигания. Резистор R2 служит для ограничения тока базы транзистора, а резистор R1 обеспечивает запирание транзистора, когда контакты прерывателя разомкнуты.

Особенностью такой системы зажигания является то, что в ней контакты прерывателя коммутируют только незначительный ток базы транзистора, в тоже время ток через первичные обмотки катушки зажигания коммутирует транзистор.

При этом вторичное напряжение в катушке зажигания может быть повышено, поскольку увеличение тока разрыва уже не ограничено электроэрозионной стойкостью контактов прерывателя, а зависит только от параметров транзистора.

Однако следует иметь в виду, что преимущества транзисторной системы зажигания могут быть реализованы лишь при применении специальной катушки зажигания, которая должна иметь первичную обмотку с низким омическим сопротивлением, малой индуктивностью и большим коэффициентом трансформации. В этом случае необходимые энергия искрообразования и вторичное напряжение достигаются соответствующим увеличением тока разрыва и коэффициентом трансформации.

***





К недостаткам транзисторных систем зажигания следует отнести большую потребляемую мощность. Это связано с необходимостью увеличения тока разрыва. Кроме того, мощные транзисторы, используемые в таких системах, требуют эффективного охлаждения во время работы, а электронные блоки систем зажигания обязательно должны иметь средства защиты от импульсных помех напряжением более 100 В.

Еще один недостаток транзисторной системы зажигания заключается в ее относительной сложности, обусловленной применением полупроводниковых приборов. Классическая контактная система зажигания состоит всего из нескольких элементов, которые даже специалист невысокой квалификации может легко проверить без специальных измерительных приборов и оборудования.

Состояние контактов прерывателя можно проверить просто визуально. Замена контактов не вызывает трудности, а зная характерные признаки неисправности катушки зажигания или распределителя можно устранить и проблемы, связанные с их отказом.

Для ремонта же или проверки электронного блока требуется специальное оборудование и персонал соответствующей квалификации.

Тем не менее, очевидные достоинства и простота их реализации предопределили широкое использование индуктивных систем зажигания на автомобильных двигателях.

Последние достижения в области создания транзисторных систем зажигания, т.е. использования высоковольтных транзисторов Дарлингтона, применение принципа нормирования времени накопления энергии, позволили практически устранить такие недостатки индуктивных систем, как большая зависимость вторичного напряжения от шунтирующего сопротивления на изоляторе свечи и от частоты вращения коленчатого вала.

Составной транзистор Дарлингтона был изобретен в 1953 году инженером Сидни Дарлингтоном (Sidney Darlington). Транзистор Дарлингтона является каскадным соединением двух (реже трех или более) биполярных транзисторов, включённых таким образом, что нагрузкой в эмиттерной цепи предыдущего каскада является переход база-эмиттер транзистора последующего каскада (то есть эмиттер предыдущего транзистора соединяется с базой последующего), при этом транзисторы соединяются коллекторами. Такое соединение позволило улучшить электрические характеристики соединяемых по схеме Дарлингтона транзисторов.

Благодаря перечисленным новшествам, тиристорные системы зажигания с емкостным накопителями потеряли часть преимуществ перед индуктивными системами зажигания, и практически не используются на автомобильных двигателях.

***

Бесконтактная система зажигания





Главная страница

  • Страничка абитуриента

Дистанционное образование
  • Группа ТО-81
  • Группа М-81
  • Группа ТО-71

Специальности
  • Ветеринария
  • Механизация сельского хозяйства
  • Коммерция
  • Техническое обслуживание и ремонт автотранспорта

Учебные дисциплины
  • Инженерная графика
  • МДК. 01.01. «Устройство автомобилей»
  •    Карта раздела
  •       Общее устройство автомобиля
  •       Автомобильный двигатель
  •       Трансмиссия автомобиля
  •       Рулевое управление
  •       Тормозная система
  •       Подвеска
  •       Колеса
  •       Кузов
  •       Электрооборудование автомобиля
  •       Основы теории автомобиля
  •       Основы технической диагностики

  • Основы гидравлики и теплотехники
  • Метрология и стандартизация
  • Сельскохозяйственные машины
  • Основы агрономии
  • Перевозка опасных грузов
  • Материаловедение
  • Менеджмент
  • Техническая механика
  • Советы дипломнику

Олимпиады и тесты
  • «Инженерная графика»
  • «Техническая механика»
  • «Двигатель и его системы»
  • «Шасси автомобиля»
  • «Электрооборудование автомобиля»

Транзисторная система зажигания: конструкция, типы, работа

Транзисторная система зажигания – это схема зажигания, исключающая использование механических устройств. Его цель — повысить эффективность работы системы зажигания за счет устранения движущихся частей, таких как точки прерывания. В этой статье вы узнаете определение, конструкцию, детали, схему, типы, работу, преимущества и недостатки транзисторной системы зажигания.

Содержание

  • 1 Что такое транзисторная система зажигания?
  • 2  Детали и конструкция
      • 2.0.1 Схема транзисторной системы зажигания:
  • 3 Принцип работы
        • 3.0. система:
    • 4 Преимущества и недостатки транзисторной системы зажигания
      • 4.1 Преимущества:
      • 4.2 Недостатки:
    • 5 Заключение
      • 5.1 Подпишитесь на нашу рассылку новостей
      • 5.2 Пожалуйста, поделитесь!

    Что такое транзисторная система зажигания?

    Как уже говорилось ранее, это схема зажигания, которая уменьшает использование механических компонентов в системе зажигания. Транзистор прерывает цепь с относительно высоким током, контролируя высокий ток в цепи коллектора, позволяя меньшему току течь через цепь базы. В результате для поддержки работы прерывателя контактов используется транзистор. В результате эту систему называют транзисторной или транзисторной системой зажигания.

    Основная предпосылка транзисторных систем зажигания заключается в том, что вместо точек прерывания транзисторы используются в качестве электронных переключателей. Те из вас, кто знаком с автомобильными системами зажигания, должны знать о точке разрыва, которую иногда называют платиной. Точка прерывания представляет собой механизм, который обеспечивает возникновение электромагнитной индукции за счет отключения тока первичной катушки в катушке зажигания. Этот наконечник прерывателя работает механически, растягивая зазор наконечника прерывателя с помощью кулачка.

    Подробнее: Система зажигания

    Детали и конструкция

    Состоит из аккумулятора, выключателя зажигания, транзистора, коллектора, эмиттера, балластного резистора, прерывателя контактов, катушки зажигания и искры. пробки. Через балластный резистор эмиттер транзистора соединен с катушкой зажигания. Аккумулятор присоединен к коллектору.

    Точка прерывания представляет собой механизм, обеспечивающий возникновение электромагнитной индукции путем отключения тока первичной катушки в катушке зажигания. Этот наконечник прерывателя работает механически, растягивая зазор наконечника прерывателя с помощью кулачка. Однако считается, что использование точек прерывания менее эффективно, поскольку трущиеся компоненты изнашиваются, что влияет на общую эффективность системы зажигания. Кроме того, когда точка прерывателя растягивается, в точке прерывателя возникает частое искрение, что снижает индукционную мощность катушки зажигания.

    Схема транзисторной системы зажигания:

    Подробнее: Принцип работы системы зажигания от магнето

    Существуют два типа транзисторных систем зажигания: точечные и магнитно-импульсные.

    Принцип работы

    Работа транзисторной системы зажигания проще и понятнее. Когда двигатель запускается, коленчатый вал вращает катушку датчика, создавая в катушке ток низкого напряжения. База транзистора станет активной, позволяя коллектору соединиться с эмиттером.

    Ток от аккумулятора проходит через обе катушки катушки зажигания. Катушка датчика будет генерировать зигзагообразный электрический ток, как было сказано ранее. Ток от приемной катушки затем направляется на базовую ветвь транзистора. Индукция в катушке зажигания происходит, когда на основание ножки в течение короткого периода времени не подается электрический ток; следовательно, за один цикл четырехцилиндрового двигателя процесс впуска может происходить четыре раза. Индукция генерирует высокое напряжение, которое распределяется на распределитель, который затем распределяет его на каждую свечу зажигания в порядке зажигания.

    При замыкании размыкателя контактов:

    • В базовой цепи транзистора протекает небольшой ток.
    • Обычное действие транзистора вызывает протекание значительного тока в эмиттерной или коллекторной цепи транзистора, а также в первичной обмотке катушки зажигания.
    • Первичная обмотка катушки создает магнитное поле.

    Когда размыкатель контактов разомкнут:

    • Поток тока в базовой цепи остановлен.
    • Из-за быстрого перехода транзистора в непроводящее состояние первичный ток и магнитное поле в катушке резко рушатся.
    • Во вторичной цепи генерирует высокое напряжение.
    • Ротор распределителя направляет это высокое напряжение на отдельные свечи зажигания.
    • Когда это высокое напряжение используется для скачка разрядника свечи зажигания, возникает искра. Он воспламеняет смесь воздуха и топлива в цилиндре.

    Подробнее: Принцип работы аккумуляторной системы зажигания

    Посмотрите видео ниже, чтобы узнать больше о работе транзисторной системы зажигания:

    Преимущества и недостатки транзисторной системы зажигания

    Преимущества:

    Ниже приведены преимущества транзисторной системы зажигания в ее различных применениях:

      Благодаря этому точки прерывания контактов

    • имеют более длительный срок службы.
    • Создает чрезвычайно высокое напряжение воспламенения.
    • Увеличивает продолжительность искр.
    • Обладает чрезвычайно точным контролем времени.
    • Не требует особого ухода.

    Недостатки:

    Несмотря на хорошие преимущества, все же имеют место некоторые ограничения. Ниже приведены недостатки транзисторной системы зажигания в различных ее применениях.

    • Подобно традиционной системе, требуется больше механических точек.
    • Имеет склонность к зарезке боковых стволов.

    Подробнее: Принцип работы электронной системы зажигания

    Заключение

    Целью транзисторной системы зажигания является повышение эффективности работы системы зажигания за счет устранения движущихся частей, таких как точки прерывателя. это все для этой статьи, где обсуждаются определение, конструкция, детали, схема, работа, преимущества и недостатки транзисторной системы зажигания.

    Надеюсь, вы многому научитесь, если да, поделитесь с другими учениками. Спасибо за чтение, увидимся!

     

    Подпишитесь на нашу рассылку новостей

     

    Работа и схема транзисторной системы зажигания

    Реклама

    Транзисторная система зажигания представляет собой схему зажигания, которая сокращает использование механических устройств. Целью транзисторной системы зажигания является повышение эффективности работы системы зажигания путем замены движущихся частей, таких как точки прерывания.

    Основной принцип транзисторных систем зажигания заключается в использовании транзисторов в качестве электронных переключателей вместо точек прерывания.

    Тем из вас, кто уже знаком с системами зажигания транспортных средств, следует знать точку прерывания или платину.

    Точка прерывания — это устройство, используемое для прерывания тока первичной катушки в катушке зажигания, чтобы могла возникнуть электромагнитная индукция. Эта точка прерывания работает механически, используя кулачок, который может растягивать зазор точки прерывания.

    Однако использование точек прерывания считается менее эффективным, так как трущиеся компоненты разрушаются, что может повлиять на общую работу системы зажигания. Кроме того, когда точка прерывателя растягивается, в точке прерывателя возникает частое искрение, так что индукционная мощность катушки зажигания снижается.

    Для этого есть регулировка зазора брекера.

    Используя транзисторы, можно решить две вышеуказанные проблемы. Таким образом, нам не нужно устанавливать зазор.

    Почему вместо точек прерывателя используются транзисторы?

    Как мы уже говорили в начале, транзистор выполняет функцию электронного переключателя. У транзистора три ножки: база, коллектор и эмиттер.

    Коллектор на входе, а эмиттер на выходе. База как контроллер, если на базе течет электрический ток (низкое напряжение), то ток на входе (коллектор) будет течь на выход (эмиттер).

    Однако, когда электрический ток на базе прекращается, коллектор снова отключается эмиттером.

    Итак, в заключение, транзистор можно использовать в системе зажигания из-за его характеристик, позволяющих быстро разъединять и соединять линии.

    Для контроля работы транзистора нам нужен один дополнительный датчик, приемная катушка. Этот датчик будет посылать ток низкого напряжения с паузами в соответствии с опережением зажигания на базовой ножке. Так что производительность транзистора будет соответствовать оборотам двигателя.

    Как работает подхват катушки?

    Катушка захвата состоит из трех частей: ротора с кулачком, постоянного магнита и катушки.

    Три компонента размещены, как показано на рисунке, подтверждено, что постоянный магнит излучает магнитное поле, которое воздействует на ротор. В то время как ротор сделан из металла, который способен притягиваться магнитами.

    Кулачок на роторе служит для сокращения зазора между ротором с постоянным магнитом.

    Из-за этого изменяющегося зазора ток в приемной катушке становится зигзагообразным. Когда кулачок расположен параллельно постоянному магниту, возникает электрический ток, но когда кулачок смещается, ток исчезает. Это падение напряжения используется в качестве синхронизации для прерывания первичного тока в катушке зажигания.

    Схема транзисторной системы зажигания

    • Аккумулятор
    • Замок зажигания
    • Вход катушки зажигания
    • Выход первичной обмотки
    • Выход вторичной обмотки
    • Транзистор
    • Захватная катушка
    • распределитель
    • Свеча зажигания

    Порядок работы транзисторной системы зажигания

    Когда двигатель запускается, коленчатый вал вращает приемную катушку, так что приемная катушка генерирует ток низкого напряжения. Это приведет к тому, что база транзистора станет активной, так что коллектор соединится с эмиттером.

    В катушке зажигания ток от аккумулятора будет протекать по обеим катушкам в катушке зажигания.

    Как объяснялось выше, приемная катушка будет генерировать зигзагообразный электрический ток.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *