PhysBook:Электронный учебник физики — PhysBook
Содержание
-
1 Учебники -
2 Механика-
2.1 Кинематика -
2.2 Динамика -
2.3 Законы сохранения -
2.4 Статика -
2.5 Механические колебания и волны
-
-
3 Термодинамика и МКТ-
3.1 МКТ -
3. 2 Термодинамика
-
-
4 Электродинамика-
4.1 Электростатика -
4.2 Электрический ток -
4.3 Магнетизм -
4.4 Электромагнитные колебания и волны
-
-
5 Оптика. СТО-
5.1 Геометрическая оптика -
5.2 Волновая оптика -
5. 3 Фотометрия -
5.4 Квантовая оптика -
5.5 Излучение и спектры -
5.6 СТО
-
-
6 Атомная и ядерная-
6.1 Атомная физика. Квантовая теория -
6.2 Ядерная физика
-
-
7 Общие темы -
8 Новые страницы
Здесь размещена информация по школьной физике:
- материалы из учебников, лекций, рефератов, журналов;
- разработки уроков, тем;
- flash-анимации, фотографии, рисунки различных физических процессов;
- ссылки на другие сайты
и многое другое.
Каждый зарегистрированный пользователь сайта имеет возможность выкладывать свои материалы (см. справку), обсуждать уже созданные.
Учебники
Формулы по физике – 7 класс – 8 класс – 9 класс – 10 класс – 11 класс –
Механика
Кинематика
Основные понятия кинематики – Прямолинейное движение – Криволинейное движение – Движение в пространстве
Динамика
Законы Ньютона – Силы в механике – Движение под действием нескольких сил
Законы сохранения
Закон сохранения импульса – Закон сохранения энергии
Статика
Статика твердых тел – Динамика твердых тел – Гидростатика – Гидродинамика
Механические колебания и волны
Механические колебания – Механические волны
Термодинамика и МКТ
МКТ
Основы МКТ – Газовые законы – МКТ идеального газа
Термодинамика
Первый закон термодинамики – Второй закон термодинамики – Жидкость-газ – Поверхностное натяжение – Твердые тела – Тепловое расширение
Электродинамика
Электростатика
Электрическое поле и его параметры – Электроемкость
Электрический ток
Постоянный электрический ток – Электрический ток в металлах – Электрический ток в жидкостях – Электрический ток в газах – Электрический ток в вакууме – Электрический ток в полупроводниках
Магнетизм
Магнитное поле – Электромагнитная индукция
Электромагнитные колебания и волны
Электромагнитные колебания – Производство и передача электроэнергии – Электромагнитные волны
Оптика.
СТО
Геометрическая оптика
Прямолинейное распространение света. Отражение света – Преломление света – Линзы
Волновая оптика
Свет как электромагнитная волна – Интерференция света – Дифракция света
Фотометрия
Фотометрия
Квантовая оптика
Квантовая оптика
Излучение и спектры
Излучение и спектры
СТО
СТО
Атомная и ядерная
Атомная физика. Квантовая теория
Строение атома – Квантовая теория – Излучение атома
Ядерная физика
Атомное ядро – Радиоактивность – Ядерные реакции – Элементарные частицы
Общие темы
Измерения – Методы решения – Развитие науки- Статья- Как писать введение в реферате- Подготовка к ЕГЭ — Репетитор по физике
Новые страницы
Запрос не дал результатов.
Физика. Механика
Представим снова элементарную работу в виде
Удельная величина, равная отношению работы совершенной за время dt к этому времени, называется мощностью:
Другими словами, мощность, развиваемая некоторой силой, равна скорости, с которой эта сила производит работу. Можно сказать и так: средняя за единицу времени мощность численно равна работе совершенной за единицу времени. Если мощность за выбранную единицу времени практически не меняется, то слово «средняя» можно опустить: мощность численно равна работе за единицу времени.
Как видно из определения, мощность равна скалярному произведению силы на скорость перемещения её точки приложения, поэтому работа силы за время от t1 до t2 может быть вычислена следующим образом:
Средняя мощность за этот же промежуток времени равна
За единицу мощности принимается такая мощность, при которой в единицу времени совершается единица работы.
В системе СИ единицей измерения мощности является ватт (Вт):
Внесистемная единица мощности — лошадиная сила (л.с.) — равна 736 Вт. В быту часто используют единицу энергии — 1 кВт•ч = 103 Вт•3600 с=3.6 МДж.
Пример. Вертолет массой m = 3 m висит в воздухе. Определить мощность, развиваемую мотором вертолета, если диаметр ротора равен d = 8 м. При расчете принять, что ротор отбрасывает вниз цилиндрическую струю воздуха диаметром, равным диаметру ротора. Плотность воздуха 1.29 кг/м3.
При решении этой задачи надо применить все известные нам законы динамики. Поскольку это — не одно- и не двухходовая задача, попробуем сначала найти вид окончательного выражения, пользуясь анализом размерности (см. тему 1.3). Искомая мощность зависит от: 1) веса вертолета mg; 2) диаметра винта d, 3) плотности воздуха , то есть искомая формула должна иметь вид
Размерность мощности будет [N] = [ML2T–3]. Составляем равенство размерностей в обеих частях искомой формулы:
Решая систему уравнений
находим
то есть искомая мощность двигателя вертолета будет
где C — некий числовой коэффициент.
Решим теперь эту же задачу точно. Пусть — скорость струи воздуха, отбрасываемой винтом. За время частицы воздуха проходят расстояние . Иными словами, за время винт вертолета придает скорость всем частицам воздуха, находящимся в цилиндре с площадью основания и высотой . Масса воздуха в этом объеме равна
а его кинетическая энергия дается выражением
Поскольку мотор передает воздуху кинетическую энергию , то такова и совершаемая им работа. Поэтому развиваемая мотором мощность (без учета потерь мощности во всех трансмиссиях на пути от двигателя до винта) равна
В этом выражении нам надо еще найти скорость струи воздуха, отбрасываемой винтом. Импульс , передаваемый частицам воздуха за время , равен
Из второго закона Ньютона следует, что средняя сила, действующая на отбрасываемый вниз воздух равна . По третьему закону Ньютона такая же сила действует на вертолет со стороны воздуха. Эта сила компенсирует вес вертолета:
Отсюда получаем уравнение
позволяющее найти скорость струи воздуха:
Подставляя найденную скорость в выражение для мощности двигателя вертолета, получаем окончательный результат:
Мы видим, что выражение для мощности действительно оказалось таким, каким ожидалось на основе анализа размерностей. Подставляя числовые данные, находим
Рис.4.5. Мощность в природе и технике
15.4 Питание в цепи переменного тока — University Physics Volume 2
Цели обучения
К концу этого раздела вы сможете:
- Опишите, как средняя мощность от цепи переменного тока может быть выражена через пиковый ток и напряжение и среднеквадратичное значение тока и напряжения
- Определить зависимость между фазовым углом тока и напряжения и средней мощностью, известную как коэффициент мощности
Элемент схемы рассеивает или производит мощность в соответствии с P=IV, P=IV, где I — ток через элемент, а V — напряжение на нем. Поскольку ток и напряжение в цепи переменного тока зависят от времени, мгновенная мощность p(t)=i(t)v(t)p(t)=i(t)v(t) также зависит от времени. График p ( t ) для различных элементов схемы показан на рис. 15.16. Для резистора i ( t ) и v ( t ) совпадают по фазе и поэтому всегда имеют один и тот же знак (см. рис. 15.5). Для конденсатора или катушки индуктивности относительные знаки i ( t ) и v ( t ) изменяются в течение цикла из-за разности фаз (см. рис. 15.7 и рис. 15.9). Следовательно, p ( t ) в одни моменты времени положителен, а в другие отрицателен, указывая на то, что емкостные и индуктивные элементы производят мощность в одни моменты времени и поглощают ее в другие.
Рисунок
15.16
График мгновенной мощности для различных элементов цепи. (a) Для резистора Pave=I0V0/2, Pave=I0V0/2, тогда как для (b) конденсатора и (c) катушки индуктивности Pave=0.Pave=0. (d) Для источника Pave=I0V0(cosϕ)/2, Pave=I0V0(cosϕ)/2, что может быть положительным, отрицательным или нулевым, в зависимости от ϕ.ϕ.
Поскольку мгновенная мощность изменяется как по величине, так и по знаку в течение цикла, она редко имеет какое-либо практическое значение. Что нас почти всегда интересует, так это мощность, усредненная по времени, которую мы называем средней мощностью. Он определяется усреднением по времени мгновенной мощности за один цикл:
Pave=1T∫0Tp(t)dt, Pave=1T∫0Tp(t)dt,
, где T=2π/ωT=2π/ω период колебаний. С заменами v(t)=V0sinωtv(t)=V0sinωt и i(t)=I0sin(ωt−ϕ),i(t)=I0sin(ωt−ϕ) этот интеграл принимает вид
Pave=I0V0T∫0Tsin(ωt−ϕ)sinωtdt.Pave=I0V0T∫0Tsin(ωt−ϕ)sinωtdt.
Использование тригонометрической связи sin (a — b) = sinacosb -sinbcosa, sin (a -b) = sinacosb -sinbcosa, мы получаем
Pave = I0V0COSмобильный. 0Tsinωtcosωtдт.
Вычисление этих двух интегралов дает
Следовательно, средняя мощность, связанная с элементом схемы, равна
Pave=12I0V0cosϕ. Pave=12I0V0cosϕ.
15.12
В технических приложениях cosϕcosϕ известен как коэффициент мощности, который представляет собой величину, на которую мощность, подаваемая в цепь, меньше теоретического максимума цепи из-за несовпадения фаз напряжения и тока. Для резистора ϕ=0,ϕ=0, поэтому средняя рассеиваемая мощность составляет
Pave=12I0V0.Pave=12I0V0.
Сравнение p ( t ) и PavePave показано на рис. 15.16(d). Чтобы сделать Pave=(1/2)I0V0Pave=(1/2)I0V0 похожим на его аналог постоянного тока, мы используем среднеквадратичные значения IrmsandVrmsIrmsandVrms тока и напряжения. По определению это 9где ∫0Tv2(t)dt.
При i(t)=I0sin(ωt−ϕ) и v(t)=V0sinωt, i(t)=I0sin(ωt−ϕ)и v(t)=V0sinωt получаем
Irms=12I0andVrms=12V0.Irms =12I0 и Vrms=12V0.
Затем мы можем написать для средней мощности, рассеиваемой резистором,
Pave=12I0V0=IrmsVrms=Irms2R.Pave=12I0V0=IrmsVrms=Irms2R.
15.13
Это уравнение дополнительно подчеркивает, почему при обсуждении выбрано среднеквадратичное значение, а не пиковые значения. Оба уравнения для средней мощности верны для уравнения 15.13, но среднеквадратические значения в формуле дают более четкое представление, поэтому дополнительный коэффициент 1/2 не нужен.
Переменные напряжения и токи обычно описываются их действующими значениями. Например, 110 В от бытовой розетки является среднеквадратичным значением. Амплитуда этого источника составляет 1102 В = 156 В. 1102 В = 156 В. Поскольку большинство счетчиков переменного тока откалиброваны по среднеквадратичным значениям, типичный вольтметр переменного тока, подключенный к бытовой розетке, будет показывать 110 В.
Для конденсатора и катушки индуктивности ϕ=π/2 и −π/2 рад, ϕ=π/2 и −π/2 рад соответственно. Поскольку cosπ/2=cos(−π/2)=0, cosπ/2=cos(−π/2)=0, из уравнения 15.12 мы находим, что средняя мощность, рассеиваемая любым из этих элементов, равна Pave=0. Pave =0. Конденсаторы и катушки индуктивности поглощают энергию из цепи в течение одного полупериода, а затем возвращают ее обратно в цепь в течение другого полупериода. Это поведение показано на графиках рис. 15.16, (b) и (c), которые показывают, что p( t) колеблется синусоидально около нуля.
Фазовый угол генератора переменного тока может иметь любое значение. Если cosϕ>0,cosϕ>0, генератор вырабатывает мощность; если cosϕ<0,cosϕ<0, он поглощает мощность. В терминах среднеквадратичных значений средняя мощность генератора переменного тока записывается как
Pave=IrmsVrmscosϕ.Pave=IrmsVrmscosϕ.
Для генератора в цепи RLC ,
tanϕ=XL−XCRtanϕ=XL−XCR
и
cosϕ=RR2+(XL−XC)2=RZ.cosϕ=RR2+(XL−XC)2= РЗ.
Отсюда средняя мощность генератора
Pave=IrmsVrmscosϕ=VrmsZVrmsRZ=Vrms2RZ2.Pave=IrmsVrmscosϕ=VrmsZVrmsRZ=Vrms2RZ2.
15.14
Это также можно записать как
Pave=Irms2R,Pave=Irms2R,
, что означает, что мощность, вырабатываемая генератором, рассеивается в резисторе. Как мы видим, закон Ома для среднеквадратичного значения переменного тока находится путем деления среднеквадратичного значения напряжения на импеданс.
Пример
15,3
Выходная мощность генератора
Генератор переменного тока, ЭДС которого определяется выражением
v(t)=(4,00 В)sin[(1,00×104 рад/с)t]v(t)=(4,00 В)sin[(1,00×104 рад/с)t]
подключен к RLC , для которой L=2,00×10-3HL=2,00×10-3H, C=4,00×10-6FC=4,00×10-6F и R=5,00ΩR=5,00Ω. а) Чему равно среднеквадратичное напряжение на генераторе? б) Чему равно сопротивление цепи? в) Какова средняя мощность генератора?
Стратегия
Среднеквадратичное напряжение – это амплитуда напряжения, умноженная на 1/21/2. Полное сопротивление цепи включает сопротивление и реактивные сопротивления конденсатора и катушки индуктивности. Средняя мощность рассчитывается по уравнению 15. 14 или, точнее, по последней части уравнения, потому что у нас есть импеданс цепи Z , среднеквадратичное напряжение VrmsVrms и сопротивление R .
Решение
- Поскольку V0=4,00 В, V0=4,00 В, среднеквадратичное напряжение на генераторе равно
Вэфф=12(4,00В)=2,83В. Вэфф=12(4,00В)=2,83В.
- Полное сопротивление цепи
Z=R2+(XL-XC)2={(5,00 Ом)2+[(1,00×104 рад/с)(2,00×10-3H)-1(1,00×104рад/с)(4,00×10-6F)] 2}1/2=7,07 Ом. Z=R2+(XL-XC)2={(5,00 Ом)2+[(1,00×104 рад/с)(2,00×10-3H)−1(1,00×104 рад/с) (4,00×10-6F)]2}1/2=7,07 Ом.
- Из уравнения 15.14 средняя мощность, передаваемая в цепь, равна
Pave=Vrms2RZ2=(2,83 В)2(5,00 Ом)(7,07 Ом)2=0,801 Вт. Pave=Vrms2RZ2=(2,83 В)2(5,00 Ом)(7,07 Ом)2=0,801 Вт.
Значение
Если сопротивление намного больше, чем реактивное сопротивление конденсатора или индуктора, средняя мощность представляет собой уравнение цепи постоянного тока P=V2/R, P=V2/R, где В заменяет среднеквадратичное значение напряжения.
Проверьте свое понимание
15,4
Проверьте свои знания Вольтметр переменного тока, подключенный к клеммам генератора переменного тока частотой 45 Гц, показывает 7,07 В. Напишите выражение для ЭДС генератора.
Проверьте свое понимание
15,5
Проверьте свои знания Покажите, что среднеквадратичное значение напряжения на резисторе, конденсаторе и катушке индуктивности в цепи переменного тока, где среднеквадратичное значение тока равно IrmsIrms, выражается как IrmsR, IrmsXC и IrmsXL, IrmsR, IrmsXC и IrmsXL соответственно. Определите эти значения для компонентов схемы RLC по уравнению 15.12.
электрические — Уравнение средней мощности
спросил
92(t)
W = Интеграл (P) за все время
Paverage = W/(период времени)
Кто-нибудь может объяснить период времени (1/2t)? Почему это не 1/T (T = период изменяющегося во времени сигнала)?
- силовой
- электрический
\$\конечная группа\$
1
\$\начало группы\$
Эта формула применима к любому сигналу (мощности или энергии), а не только к периодическому сигналу.