Как прозвонить датчик температуры: Как проверить датчик температуры охлаждающей жидкости и обнаружить неисправность

Содержание

Как проверить датчик температуры

Как проверить датчик температуры

Температура двигателя влияет на качество работы автомобиля, уровень выбросов и другие важные параметры. За эти замеры отвечает маленький датчик, за состоянием которого нужно следить. Как проверить датчик температуры, где он установлен, можно ли это сделать дома или нужно ехать на сервис – это и будем описывать.

Принцип работы датчика температуры

Как и в большинстве подобных устройств, в основу положено свойство некоторых материалов изменять проводимость тока при нагревании.

Датчик температуры представляет собой гильзу из латуни или другого цветного металла, хорошо проводящего тепло. Внутри гильзы находится термистор. В процессе работы двигателя датчик нагревается, и изменяются параметры его сопротивления току. Эти данные регистрирует контроллер управления. Потом сравнивает с эталонной таблицей и выводит на панель результат – текущую температуру двигателя.

Самостоятельная проверка работы датчиков температуры

Датчик вполне можно проверить в домашних условиях, чтобы не отвозить авто на сервис. Для этого понадобится снять его. Обычно он стоит во впускном коллекторе. Потом поместить в охлаждающую жидкость, которая постепенно нагревается. В процессе необходимо замерять сопротивление датчика омметром. Данные прибора и температура записываются и сравниваются с таблицей. Если есть несоответствия, термистор нужно менять.

Проверка датчика давления масла

Нужно приготовить насос, манометр и омметр. Насос и манометр присоединяются к датчику, а к контактам крепятся клеммы тестера. Далее нужно подать небольшое давление. Если все хорошо, цепь разомкнется, и на омметре стрелка отскочит к противоположному краю. Потом все повторяется на максимальном давлении.

Проверка датчика холостого хода

Для этого понадобится только тестер. Регулятор можно даже не демонтировать – достаточно только отключить от цепи питания. Сначала тестером замеряется сопротивление между соседними клеммами – оно должно быть около 53 Ом. Далее то же самое, но на противоположных. Тут показания должны стремиться к бесконечности. Если все так, датчик исправен. В противном случае придется его обслуживать или менять.

Основные признаки неисправности датчиков температуры

Поломка сразу же скажется на работе, но заметить ее сразу не всегда получается. На неисправность укажут:

  • сигнализация о перегреве двигателя;
  • увеличенное потребление топлива;
  • сбой холостого хода, внезапная остановка, скачки оборотов и другие проблемы с мотором;
  • системные сообщения об ошибках от блока управления.

Если такие признаки появились, нужно проверить датчик. Большинство проблем возникает из-за коррозии или механических повреждений. Поэтому визуальный осмотр уже позволит определить, исправен он или нет.

Как демонтировать датчик температуры

Снимать нужно при выключенном и остывшем двигателе. Датчик обычно крепится в выпускном патрубке головки цилиндра. От него нужно отсоединить все провода. Затем просто выкрутить обычным гаечным ключом.

Установка производится в обратном порядке: вкрутить в посадочное место, подключить провода.

Как видно, нет ничего сложного в том, чтобы проверить датчик температуры двигателя. Эту процедуру стоит проводить раз в 6-12 месяцев, не дожидаясь внешних признаков и сбоев в работе машины. Проверка сэкономит не только средства на ремонт, но и нервы владельца.

Как проверить датчик температуры | Датчики температуры

Проверка температурных датчиков

Современные кондиционеры имеют развитую систему самодиагностики, которая получает информацию от различных датчиков и на основании этого изменяет параметры системы или выдаёт коды ошибок .

Одним из типов таких датчиков являются термодатчики. обычно полупроводниковые термисторы.

Как найти температурный датчик в кондиционере

Внутренний блок:

  • Датчик температуры комнатного воздуха

Это тот самый датчик, который задаёт режим работы компрессора .

  • Датчик температуры испарителя (установлен в средней точке испарителя)

Он служит для отключения компрессора при температуре испарителя ниже нуля, или индикации ошибки, во избежание обледенения испарителя.

  • Температурный датчик на выходе из испарителя
  • Датчик температуры электродвигателя вентилятора

Отключает двигатель при перегреве, предупреждая возгорание.

Перегрев обычно случается в случае межвиткового замыкания.

  • Термопредохранитель в клеммной колодке При превышении температуры срабатывания (чаще всего около 90 0 С) он сгорает, размыкая цепь питания кондиционера.

Внешний блок:

  • Датчик температуры наружного воздуха

Этот датчик служит для ограничения работы кондиционера при температуре на улице ниже его рабочего диапазона

Кондиционер просто не включится, если температура на улице ниже его предела.

  • Датчик температуры конденсатора (может быть установлено несколько, в разных точках)

Функция этого датчика — поддержание давления конденсации в заданном пределе при изменении температуры на улице.

  • Датчик температуры нагнетания компрессора

По температуре нагнетания можно косвенно определить давление, и если оно выше нормы, то кондиционер выдаёт ошибку.

  • Датчик температуры газовой магистрали

Датчик газовой магистрали дублирует датчик низкого давления, и выдаёт ошибку при его чрезмерном снижении.

  • Температурный датчик на двигателе вентилятора
  • Термопредохранитель на соединительной колодке

Также существуют системы с определением уровня конденсата с помощью термодатчиков, вместо механического поплавка.

Как проверить датчик температуры кондиционера

Главный параметр, по которому можно судить о исправности термисторов, это его сопротивление.

Причём его сопротивление зависит от температуры

Для определения сопротивления необходим прибор — омметр или мультиметр, в котором есть функция измерения сопротивления.

Также необходим термометр, можно обычный комнатный.

Методика проверки термодатчиков:

  • Вынимаем датчик из разъёма на плате
  • Устанавливаем  прибор на функцию измерения сопротивления (лучше автоматический выбор предела измерения)
  • Считываем показания с прибора

Пример проверки датчика температуры 

Для примера возьмём кондиционер Toshiba RAV-SM562KRT-E .

Скачиваем сервис мануал для этой модели.

В разделе Troubleshooting находим таблицы зависимости сопротивления датчиков от температуры.

Возьмём для датчика температуры комнатного воздуха:

Из графика видно, что при температуре 25 0 С его сопротивление равно 10 кОм (самое распространённое значение).

Для проверки можно нагреть датчик, взяв его в руку, при этом, как видно из графика, его сопротивление должно уменьшиться.

Как узнать сопротивление датчика температуры кондиционера

Главный источник информации — документация для кондиционеров, сервис мануалы (service manual) и технические данные (technikal data).

Если же не удаётся найти информацию для данной модели, можно посмотреть документацию для других моделей этого же производителя, очень часто датчики устанавливают с одинаковыми параметрами.

Также можно измерить параметры на аналогичном кондиционере, если есть такая возможность.

Если выяснилось что датчик всё-таки неисправен и требуется временно восстановить работоспособность кондиционера пока не приобретён датчик, это можно сделать поставив на место штатного датчика резистор.

Проще всего это сделать отрезав старый неисправный датчик, а освободившиеся выводы зачистить и припаять или прикрутить к ним резистор.

Для нашего примера нужен номинал 10 кОм, можно использовать любой постоянный или подстроечный.

При этом нужно учесть, что кондиционер будет всё время работать в режиме максимальной мощности не выключая компрессор.

Так что применять этот способ можно лишь на время при крайней необходимости.

Глава 4 Основные процедуры тестирования

Проверка датчиков

Датчик температуры воздуха

— с отрицательным температурным коэффициентом. 8

Датчик температуры воздуха

— с положительным температурным коэффициентом. 9

Потенциометр регулировки состава

7 Датчик расхода воздуха

1 Осмотрите воздуховод после датчика на наличие трещин и иных повреждений. При значительном подсосе воздуха в этом месте двигатель может запускаться, но не будет работать. Небольшие протечки неблагоприятно отразятся на работе датчика.

Датчик с заслонкой

3 Подключите отрицательный провод вольтметра к корпусу двигателя.

4 Найдите в разъеме датчика контакты питания, сигнала и заземления.

5 Подключите положительный провод вольтметра к выводу сигнала датчика (см. рис. 4.10)

Рис. 4.10. Измерение напряжения с обратной стороны разъема датчика расхода воздуха

6 Снимите воздуховод.

7 Снимите крышку воздухоочистителя для облегчения доступа к заслонке датчика

8 Поверните несколько раз заслонку датчика и убедитесь, что она вращается плавно и без заеданий.

9 Включите зажигание (двигатель не запускайте). Напряжение датчика должно быть в диапазоне 0.2. 0.3 В.

10 Несколько раз откройте и закройте заслонку датчика. Напряжение должно плавно нарастать до 4.0. 4.5 В. Примечание. Если у Вас цифровой вольтметр, желательно, чтобы у него была функция графического представления напряжения. При помощи такого прибора гораздо легче убедиться в плавности изменения напряжения сигнала.

11 Установите на место воздуховод. Запустите двигатель на холостом ходу. Напряжение должно быть равно 0.5. 1.5 В.

12 Увеличьте обороты двигателя до 3000 об/мин. Напряжение должно составить 2.0. 2.5 В.

13 Полностью откройте дроссельную заслонку. При этом напряжение сигнала должно превысить 3.0 В.

Неустойчивый сигнал

14 Неустойчивость сигнала проявляется в том, что напряжение меняется ступенчато, либо временно пропадает.

15 Причинами неустойчивого сигнала могут быть износ трека потенциометра или заедание заслонки датчика. В таких случаях единственным способом устранения неисправности может быть только замена узла.

16 Иногда бывает, что в некоторых местах движок потенциометра датчика перестает контактировать с дорожкой. В этом случае напряжение также будет неустойчивым.

17 Снимите верхнюю крышку датчика и убедитесь, что движок потенциометра всегда контактирует с дорожкой при полном открытии и закрытии заслонки датчика. Если контакт нарушен, осторожно подогните пластину движка или аккуратно очистите трек.

Напряжение сигнала отсутствует

18 Убедитесь в наличии эталонного напряжения питания (5.0 В) на соответствующей клемме датчика.

19 Проверьте цепь заземления датчика.

20 Если питание и заземление в норме, проверьте целость сигнального провода датчика между разъемами датчика и БЭУ.

21 Если напряжение питания или заземление отсутствует, проверьте целость соответствующего провода между разъемами датчика и БЭУ.

22 Если все провода исправны, проверьте напряжения питания и заземление БЭУ. Если все в норме, значит БЭУ неисправен.

Напряжение питания или сигнала равно напряжению аккумулятора

23 Проверьте, нет ли короткого замыкания провода питания датчика с проводом питания от аккумулятора или выключателя зажигания.

Измерение сопротивления датчика

24 Подключите омметр между выводами сигнала и питания, или между выводами сигнала и заземления.

25 Несколько раз откройте и закройте заслонку датчика и убедитесь в том. что сопротивление изменяется плавно. Если заслонку датчика вращать очень медленно, сопротивление должно изменяться ступенчато. Это нормально. Если сопротивление датчика меняется от нуля до бесконечности, это говорит о неисправности датчика.

26 Мы намеренно не приводим значений сопротивления датчика. Эти значения менее важны для проверки функционирования датчика, чем его корректное действие.

27 Подключите омметр к клеммам питания и заземления датчика. При этом показания омметра должны быть постоянными.

28 Если сопротивление датчика хаотично изменяется от нуля до бесконечности, замените датчик. Ознакомьтесь в главе 3 с комментариями об измерении сопротивлений .

Датчик расхода воздуха КЕ- Jatronic

29 В системе KE-Jetronic датчик расхода воздуха закреппен на измерительной пластине. При перемещении измерительной пластины сигнал датчика меняется так же, как в датчике с заслонкой.

30 Методы проверки датчика, а также параметры питания и сопротивления аналогичны датчику с заслонкой.

Датчики расхода воздуха с нагретым проводом или пленкой

Примечание. Измерение напряжения проводилось для 16-кпапанного двигателя Vauxhall с системой Motronic 2.5. Для других двигателей значения напряжений допжны быть примерно такими же.

Сигнальный провод

31 Включите зажигание. Напряжение должно быть около 1.4 В.

32 Запустите двигатель на холостом ходу. Напряжение должно быть около 2.0 В.

33 Несколько раз быстро откройте и закройте дроссельную заслонку. Напряжение не должно сильно измениться. Примечание. Если у Вас цифровой вольтметр, желательно, чтобы у него была функция графического представления напряжения. При помощи такого прибора гораздо легче убедиться в плавности изменения напряжения сигнала.

34 Измерить напряжение сигнала датчика с нагретым проводом при работе двигателя очень трудно, так как для этого нужно установить автомобиль на специальном стенде (для загрузки двигателя). Однако Вы можете произвести следующую проверку исправности датчика.

35 Отсоедините воздуховод так, чтобы нагретый провод датчика был виден.

36 Включите зажигание.

37 При помощи отрезка пластмассовой трубки обдувайте нагретый провод.

38 Вы сможете построить кривую изменения напряжения, хотя она будет несколько круче. чем при работающем двигателе.

Неустойчивое напряжение датчика

39 Неустойчивость напряжение проявляется в его ступенчатом изменении или полном отсутствии.

40 Измерьте сопротивление датчика, подключив омметр к его выводам 2 и 3. Показания омметра должны составить 2.5. 3.1 Ом.

41 Если напряжение сигнала датчика неустойчиво, а все напряжения питания и заземление в норме, это говорит о неисправности датчика. В этом случае, замените датчик новым или восстановленным.

Напряжение сигнала отсутствует

42 Измерьте напряжение питания датчика (контакт № 5).

43 Проверьте цепь заземления датчика через БЭУ (контакт N 2 датчика).

44 Проверьте заземление датчика (контакт №1).

45 Если напряжение питания и заземление в норме, проверьте целость сигнального провода между датчиком и БЭУ.

46 Если напряжение питания и (или) заземление отсутствуют, проверьте целость соответствующих проводов между датчиком и БЭУ.

47 Если все провода исправны, проверьте напряжение питания и заземление БЗУ. Если все в норме, значит БЭУ неисправен.

Датчик расхода воздуха вихревого типа

48 Принцип работы датчика расхода воздуха вихревого типа основан на том. что специальным образом сконструированный впускной коллектор создает турбулентный поток воздуха. Через поток воздуха передается радиосигнал, который меняет частоту в зависимости от изменения турбулентности. Эта частота как мера расхода воздуха подается на вход БЭУ.

49 Найдите в разъеме датчика сигнальный контакт. На холостом ходу частота сигнала должна лежать в пределах 27. 33 Гц. По мере увеличения оборотов двигателя частота должна возрастать.

50 Найдите контакт заземления. Напряжение на нем не должно превышать 0.2 В.

51 Найдите контакт подвода питания. На нем должно быть напряжение бортовой сети.

52 В одном корпусе с датчиком расхода могут также располагаться датчики температуры и давления воздуха. Проверка этих датчиков ничем не отличается от проверки подобных датчиков в других системах.

8 Датчик температуры воздуха — с отрицательным температурным коэффициентом

Рис. 4.11. Измерение сигнала датчика температуры воздуха [датчик расположен в корпусе воздухоочистителя)

1 Большинство датчиков температуры воздуха, используемых в двигателях, имеют отрицательный температурный коэффициент. Основу датчика составляет термистор, сопротивление которого уменьшается с ростом температуры. Существуют термисторы и с положительным температурным коэффициентом. у которых с ростом температуры сопротивление увеличивается.

2 Датчик температуры воздуха может располагаться во впускном тракте, в датчике расхода воздуха, или во впускном коллекторе. Если датчик температуры расположен вместе с датчиком расхода воздуха, у них обычно общая линия заземления через БЭУ. Оба типа датчиков имеют два провода и способы их проверки имеют много общего.

3 Подключите отрицательный провод вольтметра к корпусу двигателя.

4 Найдите выводы сигнала и заземления.

5 Подключите положительный провод вольтметра к выводу сигнала (см. рис. 4.11).

6 Включите зажигание (двигатель не запускайте).

7 Напряжение должно составить 2.0. 3.0. В (в зависимости от температуры воздуха). Для более точного определения значений напряжения в зависимости от температуры см. приведенную ниже таблицу или обратитесь к технической характеристике датчика.

8 Напряжение сигнала датчика зависит от температуры воздуха во впускном тракте или во впускном коллекторе. По мере прогрева двигателя температура в моторном отсеке, а значит, и во впускном коллекторе увеличивается. Напряжение сигнала при этом уменьшается. Пока двигатель холодный, температура воздуха равна наружной температуре. По мере роста температуры двигателя, температура в моторном отсеке повышается. Температура воздуха во впускном коллекторе при этом достигает 70. 80°С. Эта температура превышает температуру воздуха в моторном отсеке.

9 Для облегчения проведения теста мы рекомендуем подогревать датчик при помощи фена для волос, а охлаждать при помощи специального охлаждающего аэрозоля или ручного вентилятора. При изменении температуры сопротивление и напряжение датчика также меняются.

проверка датчика температуры воздуха

Датчик температуры воздуха (ATS) с отрицательным температурным коэффициентом. 1 Большинство систем управления двигателем использует ATS с отрицательным температурным коэффициентом (NTC). Датчик такого типа является терморезистором,сопротивление которого уменьшается по мере повышения температуры.Однако, на некоторых системах встречаются датчики температуры воздуха с положительным температурным коэффициентом (РТС). У такого терморезистора сопротивление при нагревании повышается.

2 ATS может быть установлен в корпусе датчика воздушного потока или во впускном коллекторе. Если ATS находится в датчике воздушного потока, они имеют общее заземление. Оба типа ATS являются двухконтактными датчиками, и процедуры их тестирования аналогичны.

3 Соедините отрицательный щуп вольтметра с заземлением на двигателе.

4 Найдите выводящую сигнал и заземляющую клеммы.

5 Соедините положительный щуп вольтметра с проводом, прикрепленным к выводящей сигнал клемме ATS .

6 Включите зажигание, но не запускайте двигатель.

7 Напряжение должно составить приблизительно 2 — 3 В (в зависимости от температуры воздуха). См. таблицу напряжения сигнала ATS при различных температурах.

Таблица сопротивления и напряжения в цепи A TS типа NTC.

Датчики температуры: типы, принцип работы и применение

Все мы используем датчики температуры в повседневной жизни, будь то термометры, бытовые водонагреватели, микроволновые печи или холодильники. Обычно датчики температуры имеют широкий спектр применения, в том числе геотехнический мониторинг.

Температурные датчики представляют собой простой прибор, который измеряет степень нагревания или холода и преобразует ее в удобочитаемую единицу измерения. Но задумывались ли вы когда-нибудь, как измеряется температура почвы, скважин, огромных бетонных дамб или зданий? Ну, это достигается с помощью некоторых специализированных датчиков температуры.

Датчики температуры предназначены для регулярной проверки бетонных конструкций, мостов, железнодорожных путей, почвы и т. д.

Здесь мы расскажем вам, что такое датчик температуры, как он работает, где используется и каковы его разновидности.

Что такое датчики температуры?

Датчик температуры представляет собой устройство, обычно термопару или резистивный датчик температуры, который обеспечивает измерение температуры в читаемой форме посредством электрического сигнала.

Термометр — это самая простая форма измерителя температуры, которая используется для измерения степени нагревания и охлаждения.

Измерители температуры используются в геотехнической области для мониторинга бетона, конструкций, грунта, воды, мостов и т. д. на предмет их структурных изменений, вызванных сезонными колебаниями.

Термопара (Т/Т) изготовлена ​​из двух разнородных металлов, которые генерируют электрическое напряжение, прямо пропорциональное изменению температуры. RTD (датчик температуры сопротивления) представляет собой переменный резистор, который изменяет свое электрическое сопротивление прямо пропорционально изменению температуры точным, воспроизводимым и почти линейным образом.

Что делают датчики температуры?

Датчик температуры — это устройство, предназначенное для измерения степени нагревания или холода объекта. Работа измерителя температуры зависит от напряжения на диоде. Изменение температуры прямо пропорционально сопротивлению диода. Чем ниже температура, тем меньше сопротивление, и наоборот.

Сопротивление диода измеряется и преобразуется в удобочитаемые единицы измерения температуры (Фаренгейты, Цельсия, Цельсия и т. д.) и отображается в числовой форме над единицами измерения. В области геотехнического мониторинга эти датчики температуры используются для измерения внутренней температуры конструкций, таких как мосты, плотины, здания, электростанции и т. д.

Для чего используется датчик температуры? | Каковы функции датчика температуры?

Существует много типов датчиков температуры, но наиболее распространенный способ их классификации основан на способе подключения, который включает в себя контактные и бесконтактные датчики температуры.

Контактные датчики включают термопары и термисторы, поскольку они находятся в непосредственном контакте с измеряемым объектом. Принимая во внимание, что бесконтактные датчики температуры измеряют тепловое излучение, испускаемое источником тепла. Такие измерители температуры часто используются в опасных средах, таких как атомные электростанции или тепловые электростанции.

В геотехническом мониторинге датчики температуры измеряют теплоту гидратации в массивных бетонных конструкциях. Их также можно использовать для мониторинга миграции грунтовых вод или просачивания. Одной из наиболее распространенных областей, где они используются, является отверждение бетона, потому что он должен быть относительно теплым, чтобы правильно схватываться и отвердевать. Сезонные колебания вызывают расширение или сжатие структуры, тем самым изменяя ее общий объем.

Как работает датчик температуры?

Основным принципом работы датчиков температуры является напряжение на клеммах диода. Если напряжение увеличивается, температура также повышается, что сопровождается падением напряжения между выводами транзистора базы и эмиттера в диоде.

Кроме того, Encardio Rite имеет датчик температуры с вибрирующей проволокой, работающий по принципу изменения напряжения при изменении температуры.

Измеритель температуры с вибропроводом разработан по принципу, согласно которому разнородные металлы имеют разный коэффициент линейного расширения при изменении температуры.

Он в основном состоит из магнитной натянутой проволоки с высокой прочностью на растяжение, два конца которой прикреплены к любому разнородному металлу таким образом, что любое изменение температуры непосредственно влияет на натяжение проволоки и, таким образом, на ее собственную частоту вибрации .

Отличным металлом в случае измерителя температуры Encardio Rite является алюминий (алюминий имеет больший коэффициент теплового расширения, чем сталь). другие датчики с вибрирующей проволокой также могут использоваться для контроля температуры.

Изменение температуры воспринимается специально разработанным вибрационным проводным датчиком Encardio Rite и преобразуется в электрический сигнал, который передается в виде частоты на блок считывания.

Частота, которая пропорциональна температуре и, в свою очередь, натяжению σ в проводе, может быть определена следующим образом:

f = 1/2 [σg/ρ] / 2l Гц :

σ = натяжение проволоки

g = ускорение свободного падения

ρ = плотность провода

l = длина провода

Какие существуют типы датчиков температуры?

Доступны датчики температуры различных типов, форм и размеров. Два основных типа датчиков температуры:

Датчики температуры контактного типа : Есть несколько измерителей температуры, которые измеряют степень тепла или холода в объекте, находясь в непосредственном контакте с ним. Такие датчики температуры относятся к категории контактных. Их можно использовать для обнаружения твердых тел, жидкостей или газов в широком диапазоне температур.

Датчики температуры бесконтактного типа : Эти типы измерителей температуры не находятся в непосредственном контакте с объектом, а измеряют степень тепла или холода посредством излучения, испускаемого источником тепла.

Контактные и бесконтактные датчики температуры подразделяются на:

Термостаты

Термостат представляет собой датчик температуры контактного типа, состоящий из биметаллической полосы, состоящей из двух разнородных металлов, таких как алюминий, медь, никель или вольфрам.

Разница в коэффициентах линейного расширения обоих металлов заставляет их производить механическое изгибающее движение при воздействии тепла.

Термисторы

Термисторы или термочувствительные резисторы меняют свой внешний вид при изменении температуры. Термисторы изготовлены из керамического материала, такого как оксиды никеля, марганца или кобальта, покрытые стеклом, что позволяет им легко деформироваться.

Большинство термисторов имеют отрицательный температурный коэффициент (NTC), что означает, что их сопротивление уменьшается с повышением температуры. Но есть несколько термисторов, которые имеют положительный температурный коэффициент (PTC), и их сопротивление увеличивается с повышением температуры.

Резистивные датчики температуры (RTD)

RTD представляют собой точные датчики температуры, изготовленные из проводящих металлов высокой чистоты, таких как платина, медь или никель, намотанных в катушку. Электрическое сопротивление RTD изменяется аналогично термистору.

Термопары

Одним из наиболее распространенных датчиков температуры являются термопары из-за их широкого диапазона рабочих температур, надежности, точности, простоты и чувствительности.

Термопара обычно состоит из двух спаев разнородных металлов, таких как медь и константан, сваренных или обжатых вместе. Один из этих спаев, известный как холодный спай, поддерживается при определенной температуре, а другой — измерительный спай, известный как горячий спай.

При воздействии температуры на переходе возникает падение напряжения.

Термистор с отрицательным температурным коэффициентом (NTC)

Термистор — это в основном чувствительный датчик температуры, который точно реагирует даже на незначительные изменения температуры. Он обеспечивает огромное сопротивление при очень низких температурах. Это означает, что как только температура начинает повышаться, сопротивление начинает быстро падать.

Из-за большого изменения сопротивления на градус Цельсия даже небольшое изменение температуры точно отображается термистором с отрицательным температурным коэффициентом (NTC). Из-за этого экспоненциального принципа работы требуется линеаризация. Обычно они работают в диапазоне от -50 до 250 °C.

Полупроводниковые датчики

Полупроводниковый датчик температуры работает с двойными интегральными схемами (ИС). Они содержат два одинаковых диода с чувствительными к температуре характеристиками напряжения и тока для эффективного измерения изменений температуры.

Однако они дают линейный выходной сигнал, но менее точны при температуре от 1 °C до 5 °C. Они также демонстрируют самый медленный отклик (от 5 до 60 с) в самом узком диапазоне температур (от -70 °C до 150 °C).

Датчик температуры с вибрационным проводом, модель ETT-10V

Измеритель температуры с вибропроводом Encardio Rite модели ETT-10V используется для измерения внутренней температуры бетонных конструкций или воды. Он имеет разрешение лучше 0,1 ° C и работает аналогично датчику температуры термопары. Он также имеет диапазон высоких температур от -20 o до 80 o  C.

Пт 100 Диапазон -20 o  до 80 o  C Точность

стандарт

± 0,5 % полной шкалы; ± 0,1 % полной шкалы опционально Размеры (Φ x Д) 34 х 168 мм
Термисторный датчик сопротивления модели ETT-10TH

Датчик температуры сопротивления Encardio Rite модели ETT-10TH представляет собой небольшой водонепроницаемый датчик температуры для измерения температуры от –20 до 80°C. Благодаря низкой тепловой массе он имеет быстрое время отклика.

Датчик температуры сопротивления модели ETT-10TH специально разработан для измерения температуры поверхности стали и измерения температуры поверхности бетонных конструкций. ETT-10TH может быть встроен в бетон для измерения объемной температуры внутри бетона и может работать даже в погруженном состоянии под водой.

Датчики температуры сопротивления ETT-10TH полностью взаимозаменяемы. Показания температуры не будут отличаться более чем на 1°C в указанном диапазоне рабочих температур. Это позволяет использовать один индикатор с любым датчиком ETT-10TH без повторной калибровки.

Вибрационный проводной индикатор модели EDI-51V компании Encardio Rite при использовании с ETT-10TH напрямую показывает температуру зонда в градусах Цельсия.

Как работает датчик термистора сопротивления модели ETT-10TH?

Температурный датчик ETT-10TH состоит из термистора с кривой зависимости сопротивления от температуры, залитого эпоксидной смолой и заключенного в медную трубку для более быстрого теплового отклика и защиты от окружающей среды. Трубка сплющена на конце, чтобы ее можно было закрепить на любой достаточно плоской металлической или бетонной поверхности для измерения температуры поверхности.

Плоский наконечник зонда можно прикрепить к большинству поверхностей с помощью легкодоступных двухкомпонентных эпоксидных клеев. При желании зонд также можно прикрепить болтами к поверхности конструкции.

Температурный датчик снабжен четырехжильным кабелем, используемым в качестве стандарта во всех вибропроволочных тензодатчиках Encardio Rite. Провода белого и зеленого цветов используются для термистора, аналогичного другим датчикам Encardio Rite с вибрирующим проводом.

Пара красных и черных проводов не используется. Единая цветовая схема для разных датчиков облегчает безошибочное соединение с терминалом регистратора данных.

Характеристики модели ETT-10TH
Тип датчика Кривая R-T соответствует термистору NTC, эквивалентна YSI 44005
Диапазон -20 o  до 80 o C
Точность 1 или С
Материал корпуса Луженая медь
Кабель 4-жильный в оболочке из ПВХ
Датчик температуры RTD модели ETT-10PT

Датчик температуры ETT-10PT RTD (датчик температуры сопротивления) состоит из керамического резистивного элемента (Pt. 100) с европейской калибровкой кривой DIN IEC 751 (ранее DIN 43760). Элемент сопротивления размещен в прочной трубке из нержавеющей стали с закрытым концом, которая защищает элемент от влаги.

Как работает датчик температуры RTD модели ETT-10PT?

Датчик температуры сопротивления работает по принципу, согласно которому сопротивление датчика зависит от измеренной температуры. Платиновый RTD имеет очень хорошую точность, линейность, стабильность и воспроизводимость.

Датчик температуры сопротивления модели ETT-10PT поставляется с трехжильным экранированным кабелем. Красный провод обеспечивает одно соединение, а два черных провода вместе обеспечивают другое. Таким образом достигается компенсация сопротивления выводов и изменения сопротивления выводов от температуры. Показания датчика температуры сопротивления можно легко считывать с помощью цифрового индикатора температуры RTD.

Нажмите кнопку редактирования, чтобы изменить этот текст. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Технические характеристики термометра сопротивления модели ETT-10PT
Тип датчика Пт 100
Диапазон -20 o  до 80 o  C
Точность ± (0,3 + 0,005*t) o  С
Калибровка ДИН МЭК 751
Кривая (европейская) 0,00385 Ом/Ом/ o C
Размеры (Φ x Д) 8 х 135 мм
Кабель 3-жильный экранированный
Термопара Encardio Rite

Компания Encardio Rite предлагает Т-образную термопару (медь-константан) для измерения внутренней температуры в бетонных конструкциях. Он состоит из двух разнородных металлов, соединенных вместе на одном конце. Когда соединение двух металлов нагревается или охлаждается, возникает напряжение, которое можно соотнести с температурой.

Термопарное измерение состоит из провода термопары с двумя разнородными проводниками (медь-константан), соединенными на одном конце для образования горячего спая. Этот конец герметизируется от коррозии и размещается в требуемых местах измерения температуры.

Другой конец провода термопары соединяется с подходящим разъемом термопары для образования холодного спая. Показания термопары отображают прямое показание температуры в месте установки и автоматически компенсируют температуру холодного спая.

Технические характеристики термопары Encardio Rite
Тип провода T-медь-константан
Изоляция провода PFA ТефлонC
Температура горячего спая До 260 o C (макс. )
Тип разъема Миниатюрный Стеклонаполненный нейлон
Рабочая температура -20 o  до 100 o C
Температура холодного спая Окружающая среда

Где используется датчик температуры?

Применение датчика температуры включает:

  1. Датчики температуры используются для проверки проектных предположений, которые способствуют более безопасному и экономичному проектированию и строительству.
  2. Они используются для измерения повышения температуры в процессе твердения бетона.
  3. Они могут измерять температуру горных пород вблизи резервуаров для хранения сжиженного газа и операций по замораживанию грунта.
  4. Датчики температуры

  5. также могут измерять температуру воды в резервуарах и скважинах.
  6. Его можно использовать для интерпретации связанных с температурой изменений напряжения и объема в плотинах.
  7. Их также можно использовать для изучения влияния температуры на другие установленные приборы.

Преимущества датчиков температуры Encardio Rite

  1. Датчик температуры Encardio Rite является точным, недорогим и чрезвычайно надежным.
  2. Они подходят как для поверхностного монтажа, так и для встроенных приложений.
  3. Низкая тепловая масса обеспечивает более быстрое время отклика.
  4. Датчик температуры с вибропроводом полностью взаимозаменяем; один индикатор может считывать все датчики.
  5. Имеет защищенный от непогоды корпус со степенью защиты IP-68.
  6. Они поставляются с легкодоступными индикаторами для прямого отображения температуры.
  7. Датчики температуры обладают отличной линейностью и гистерезисом.
  8. Технология вибрирующей проволоки обеспечивает долговременную стабильность, быстрое и легкое считывание.
  9. Датчики герметично запаяны электронно-лучевой сваркой с вакуумом внутри них около 1/1000 Торр.
  10. Они подходят для удаленного считывания, сканирования, а также регистрации данных.

Часто задаваемые вопросы

В чем разница между датчиком температуры и преобразователем температуры?

Датчик температуры — это прибор, используемый для измерения степени нагревания или холода объекта, тогда как преобразователь температуры — это устройство, сопряженное с датчиком температуры для передачи сигналов на удаленное место в целях контроля и управления.

Это означает, что термопара, RTD или термистор подключены к регистратору данных для получения данных в любом удаленном месте.

Как измеряется температура в бетонной плотине?

За исключением процедуры, принятой во время строительства, наибольший фактор, вызывающий напряжение в массивном бетоне, связан с изменением температуры. Поэтому для анализа развития термических напряжений и контроля искусственного охлаждения необходимо отслеживать изменение температуры бетона во время строительства.

Для этого необходимо точно измерить температуру во многих точках конструкции, в воде и в воздухе. Необходимо встроить достаточное количество датчиков, чтобы получить правильную картину распределения температуры в различных точках конструкции.

Типичная схема большой бетонной плотины заключается в размещении датчиков температуры через каждые 15–20 м по поперечному сечению и через каждые 10 м по высоте. Для небольших плотин расстояние может быть уменьшено. Температурный датчик, помещенный в верхней части плотины, оценивает температуру резервуара, поскольку она меняется в течение года.

Это намного проще, чем время от времени бросать термометр в резервуар для наблюдения. При эксплуатации бетонной плотины суточные и сезонные изменения окружающей среды оказывают разрушительное воздействие на развитие термических напряжений в конструкции. Эффект более заметен на нижней стороне. Рядом с бетонной плотиной и в нижней ее части следует разместить несколько датчиков температуры для оценки быстрых ежедневных и еженедельных колебаний температуры.

Какой датчик температуры самый точный?

Термометр сопротивления — самый точный датчик температуры. Платиновый RTD имеет очень хорошую точность, линейность, стабильность и воспроизводимость по сравнению с термопарами или термисторами.

Что такое термопара?

Термопара — это тип датчика температуры, который используется для измерения внутренней температуры объекта.

Для термопар действуют три закона, как указано ниже:

Закон однородности материала

Если все провода и термопара изготовлены из одного материала, то изменения температуры в проводке не влияют на выходное напряжение. Следовательно, необходимы провода, изготовленные из различных материалов.

Закон промежуточных материалов

Сумма всех термоэлектрических сил в цепи с рядом разнородных материалов при одинаковой температуре равна нулю. Это означает, что если добавить третий материал при той же температуре, новый материал не будет генерировать результирующее напряжение.

Закон последовательных или промежуточных температур

Если два разнородных однородных материала создают термо-ЭДС1, когда их соединения находятся в точках Т1 и Т2, и создают термо-ЭДС2, когда точки соединения находятся в точках Т2 и Т3, то ЭДС возникает, когда точки соединения находятся в точках Т1 и T3 будет emf1 + emf2

Как проверить датчик температуры?

В Encardio Rite у нас есть специализированные камеры для температурных испытаний (с уже известной температурой и системами контроля температуры) для проверки точности и качества наших датчиков температуры.

Это все о датчиках температуры, их различных типах, применениях, использовании, а также принципе работы. Дайте нам знать ваши вопросы в разделе комментариев ниже.

Как работают датчики температуры?

Как работают датчики температуры? Это устройства для измерения температуры с помощью электрических сигналов. Датчик состоит из двух металлов, которые генерируют электрическое напряжение или сопротивление, когда замечают изменение температуры. Датчик температуры играет решающую роль в поддержании определенной температуры в любом оборудовании, используемом для производства чего угодно, от лекарств до пива. Для производства контента такого типа точность и быстрота реагирования на температуру и температурный контроль имеют решающее значение для обеспечения идеального качества конечного продукта. Температура является наиболее распространенным физическим типом измерения в промышленных приложениях. Точные измерения жизненно важны для обеспечения успеха этих процессов. Есть много не столь очевидных приложений, в которых используются датчики температуры. Плавление шоколада, использование доменной печи, управление воздушным шаром, замораживание веществ в лаборатории, управление автомобилем и обжиг печи.

Датчики температуры бывают разных форм, которые используются для разных методов управления температурой. Существует две категории датчиков температуры: контактные и бесконтактные. Контактные датчики используются в основном во взрывоопасных зонах.

Ниже приведены контактные датчики температуры:

Датчик температуры сопротивления (RTD) известен как термометр сопротивления и измеряет температуру по сопротивлению элемента RTD с температурой. Металл может быть изготовлен из различных материалов, включая платину, никель или медь. Однако платина является наиболее точной и, следовательно, имеет более высокую стоимость.

Термопара представляет собой датчик, состоящий из двух проводов из двух разных металлов, соединенных в двух точках. Напряжение между двумя проводами отражает изменение температуры. Хотя точность может быть немного ниже, чем у RTD, они имеют самый широкий диапазон температур от -200 ° C до 1750 ° C и, как правило, более экономичны.

Термистор показывает точное, предсказуемое и значительное изменение различных температур. Это большое изменение означает, что температуры отражаются очень быстро, но также очень точно. При таком большом и быстродействующем термисторе NTC действительно требуется линеаризация, поэтому здесь задействована некоторая математика.

Обычно, когда мы думаем о температуре, мы думаем о термометре, особенно о стеклянной трубке, наполненной ртутью. Тем не менее, существует несколько типов термометров: Стеклянный термометр: как указано выше, стеклянная трубка из ртути/этанола. Этанол в настоящее время является основной жидкостью, используемой в этих термометрах.
Биметаллический термометр: этот тип термометра состоит из соединенного манометра и стержня. Наконечник датчика имеет пружину, прикрепленную к стержню, ведущему к стрелке датчика. Пружина находится внутри чувствительного конца штока. Когда к чувствительной катушке прикладывается тепло, в ней создается движение, которое вызывает движение стрелки датчика, отображая тем самым температуру.
Газонаполненный и жидкостный термометр: Принцип работы этих термометров аналогичен. Есть колба, наполненная газом или жидкостью. Он расположен внутри чувствительного конца зонда. При нагревании газ расширяется/жидкость нагревается, что сигнализирует прикрепленному стержню о перемещении стрелки до измеряемой температуры. Цифровой термометр
: в цифровом термометре используется датчик, такой как термопара или датчик температуры сопротивления (RTD). Температура измеряется с помощью зонда (чувствительный конец) и отображается в виде цифрового показания.

Ниже приведен Бесконтактный датчик температуры

Инфракрасные датчики определяют температуру на расстоянии, измеряя тепловое излучение, испускаемое объектом или источником тепла. Они часто применяются при высоких температурах или в опасных средах, где вам необходимо соблюдать безопасное расстояние от определенного тела. Тепловизионные и инфракрасные датчики являются наиболее распространенным типом бесконтактных датчиков температуры и используются в следующих случаях: Обнаружение лихорадки или когда целевой объект движется (например, на конвейерной ленте или внутри движущегося оборудования), если на большом расстоянии, если окружающая среда опасна (например, высокое напряжение) или при экстремально высоких температурах, когда контактный датчик не будет работать должным образом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *