Как генератор вырабатывает электрический ток: Выработка электричества | Cummins Inc.

Выработка электричества | Cummins Inc.

Откуда берется электричество?

Давайте ответим на этот вопрос с конца.

Щелкните выключателем в своем доме, и свет зажжется. Мы делаем это десятки раз в день, не задумываясь о том, что именно происходит или какая электрическая система делает это возможным.

Давайте на минутку отследим электрический ток. Электричество поступает в ваш дом на электрическую панель через служебный вход. Служебный вход подключается к кабелям низкого напряжения на воздушных линиях электропитания, которые, в свою очередь, подключаются к столбовому трансформатору. Столбовые трансформаторы подключаются к воздушным линиям среднего напряжения и к так называемой распределительной сети, соединяющей местных потребителей электроэнергии в пределах определенной области.

Распределительная сеть подключается к транспортной сети через подстанцию. Транспортная сеть состоит из линий электропередач высокого и очень высокого напряжения, предназначенных для передачи большого объема электроэнергии на значительные расстояния. Эти линии электропередачи ведут к электростанциям, где вырабатывается электричество.

Представьте себе, что электрический ток — это вода, протекающая по трубе. В начале трубы, а, может, и через сотни километров, давление воды чрезвычайно высокое. По мере приближения к городским районам и домам давление снижается до более контролируемых значений. Вот почему на каждом этапе вдоль пути установлены подстанции и трансформаторы, снижающие напряжение электричества.

 

Что такое возобновляемая электроэнергия?

Возобновляемая электроэнергия – это просто электроэнергия, вырабатываемая с использованием источников возобновляемой энергии. Солнце, ветер и вода — три наиболее распространенных источника для выработки возобновляемой электроэнергии.

Спрос на возобновляемую электроэнергию растет по двум основным причинам. Первая причина — доступность. Солнечные панели и ветряные турбины с годами стали эффективнее и дешевле. Вторая причина связана с экологическими проблемами. Терпимость к выбросам электростанций, работающих на ископаемом топливе, быстро снижается. Это стимулирует тенденцию замены электростанций, работающих на ископаемом топливе, возобновляемыми энергетическими ресурсами.

 

Что такое электричество переменного и постоянного тока?

Переменный ток (AC) и постоянный ток (DC) — это два различных способа протекания электрического тока в цепи.

Постоянный ток течет с постоянной скоростью и всегда в одном направлении. Переменный ток протекает с переменной скоростью, и его направление часто меняется.

Когда говорится, что электроснабжение в Северной Америке осуществляется с частотой 60 Гц, это означает, что направление потока переменного тока меняется 60 раз в секунду. Представьте себе переменный ток как коленчатый вал в спортивном, скоростном болиде. Автомобиль оборудован множеством цилиндров, толкающих коленчатый вал для перемещения автомобиля, но цилиндры толкают коленчатый вал неодновременно. Вместе они обеспечивают движение машины, и это движение кажется равномерным.

А теперь представьте себе постоянный ток в качестве ручной дрели. Дрель обеспечивает постоянное движение, постоянную мощность для любой выполняемой задачи.

На заре электрификации постоянный и переменный ток рассматривались как действенные способы производства, транспортировки, распределения и потребления электроэнергии. В этой связи мы должны вернуться к Эдисону и Вестингаузу.

Эдисон представлял себе электрическую систему, основанную на электричестве постоянного тока. Вестингауз поддерживал разработку системы переменного тока. Проблема для них заключалась в том, что системы переменного и постоянного тока являются взаимоисключающими, поэтому одна должна была возобладать, а другая — проиграть. Это привело к ожесточенному соперничеству, вошедшему в анналы истории.

В конечном итоге, переменный ток стал доминирующим типом электроэнергии, потому что его было гораздо проще эффективным образом транспортировать и распределять от электрических станций до подстанций, домов и предприятий.

Фрагменты электрической системы постоянного тока Эдисона оставались в Нью-Йорке в течение значительной части 20 века, например, в старых зданиях, которые были оборудованы лифтами постоянного тока, или в системе метро, поезда которых также использовали постоянный ток для своего движения. Последний потребитель постоянного тока на Манхэттене, здание на 40-й улице, был отключен лишь в 2007 году.

Интересно, что линии электропередачи постоянного тока продолжают использоваться в некоторых областях применения. Например, их обычно выбирают для подводных кабелей, которые передают электроэнергию, вырабатываемую морскими ветровыми электростанциями, обратно на сушу. Причина того, что линии постоянного тока могут подключаться к сети переменного тока, заключается в наличии на сегодняшний день силовой электроники, которая может преобразовывать электроэнергию между постоянным и переменным током с минимальными потерями — силовая электроника еще не была изобретена в 19 веке, поэтому Эдисон и Вестингауз не имели возможности ее использовать.

Генераторы тока: переменного и постоянного


Отсутствие электричества сегодня не становится проблемой как в быту, так и в промышленности. Широкий ассортимент генераторов тока позволяет решить проблему быстро, с минимальными трудозатратами. Резервные источники питания незаменимы в современной реальности — всему нужна электроэнергия. Гарантии, что подачу электроэнергии не прекратят в самый неподходящий момент – не может дать ни она организация. Поэтому резервная электростанция на базе генератора постоянного или переменного тока  — важное, а зачастую незаменимое оборудование, которое обеспечивает непрерывность производства, комфорт в бытовой сфере, безопасность и непрерывность технологических процессов.


Когда нет электрической энергии, требуется получить её из другого источника. Наши предки, например, использовали силу ветра, течения рек. Впрочем, сегодня подобную энергию применяют, если не жалко времени и сил на возведение плотин и ветряков. Генераторы тока стандартно «работают» на топливе, за счет вращения обмотки в магнитном поле преобразовывая механическую энергию вращения в электричество. Ток возникает в замкнутом контуре, протекает по обмоткам, когда к электростанции подключается потребитель — именно так работает генератор тока.

В зависимости от того, как вращается магнитное поле (при неподвижном или подвижном проводнике) различают два типа этих электрических машин — генераторы постоянного или переменного тока.

В чем разница между постоянным и переменным током


Вспоминаем уроки физики. Электроток — заряженные микрочастицы, которые «бегут» в определенном направлении. У постоянного тока частицы движутся по прямой, в одном направлении от минуса к плюсу. У переменного движение электронов идет по синусоиде с определенной частотой (полярность между проводами меняется несколько раз за заданный промежуток времени).

Разница между движением заряженных частиц заложена в принцип работы генераторов электрического тока. Для простого обывателя можно сказать так: в розетке — переменный, в батарейке — постоянный. В качестве частного случая, с очень большим упрощением, можно сказать так: всё что с напряжением до 48 Вольт — всё постоянный, всё что от 100 до 500 Вольт — переменный.

Автор статьи и специалисты Mototech прекрасно осведомлены о том, что и постоянный ток может иметь практически любое напряжение (например, 380 Вольт на шине постоянного тока в ИБП), так же как и переменный ток для узких задач.

В чем конструктивная разница между генераторами


Несмотря на то, что конечный результат работы электростанций один — потребитель получает электроэнергию, методы преобразования механической энергии в электродвижущую силу и электричество различаются. Элементы (комплектующие) также отличны.

Особенности конструкции генераторов переменного тока

Электростанция такого типа состоит из:

  • Внешней силовой рамы, изготовленной из высокопрочных сплавов. Корпус рассчитан на интенсивную нагрузку, возникающую при передаче магнитного потока от полюса к полюсу. Проще говоря: чугунный кожух не «пробивается» разрядами тока.
  • Магнитных полюсов, закрепленные на корпусе болтами или шпильками. На «плюс» и «минус» монтируется обмотка.
  • Статора. Остов с катушкой возбуждения изготавливают из ферромагнитных материалов, на сердечнике устанавливают магнитные полюса, которые и образуют магнитное поле.
  • Вращающегося ротора (якоря). Задача магнитопровода — снизить вихревые токи и повысить КПД генератора постоянного тока.
  • Коммутационного узла, оснащенного щетками (обычно изготовленными из графита) и коллекторными пластинами из меди.


Полюсов может быть несколько (число минусов и плюсов всегда идентично). Поэтому сегодня потребитель может купить электростанцию необходимой мощности и обеспечить электричеством как дом, так и промышленный объект.

Особенности конструкции генератора переменного тока


Конструктивной разницы в статоре и роторе между устройствами постоянного и переменного тока нет. Практически идентичны и силовые рамы. Существенное отличие в комплектации коммуникационного узла. Каждый выход механизма помимо щеток оснащен токопроводящими кольцами. «Закольцованный» ток движется по синусоиде и несколько раз в секунду достигает пика мощности. По типу устройства, характеристикам и принципу работы современные генераторы переменного тока делятся на синхронные и асинхронные.



Специфика синхронного устройства: скорость вращения ротора равна скорости вращения магнитного поля в рабочем зазоре.

Асинхронным машинам характерны:

  • Отсутствие электрической связи с ротором;
  • Вращение якоря под воздействием остаточного механизма статора;
  • Измененная электрическая нагрузка на статоре.


Такие агрегаты могут быть однофазными и трехфазными.

Принцип работы генератора постоянного тока

Простейший  по конструкции генератор работает следующим образом:

  • Рамка вращается вокруг оси, расположенная на корпусе обмотка регулярно проходит через «минус» и «плюс» полюсов.
  • Каждый раз при достижении разнополюсных точек, происходит смена направления тока на противоположное.
  • Выходной цепи благодаря полукольцу, расположенному на коллекторном узле, создается постоянный ток.
  • С помощью щеток с положительного или отрицательного полюса снимается потенциал и по схеме передается потребителю.


Такая схема работает в простейшей конструкции, с одним плюсом и минусом, если положительных/отрицательных точек больше, ЭДС и ориентировочное количество электроэнергии рассчитываются по формуле.


К преимуществам генераторов постоянного тока относят:

  • Небольшой вес и компактность агрегата;
  • Возможность использовать в экстремальных условиях;
  • Отсутствие потерь, связанных с вихревыми токами.


Минус: на большую мощность при использовании устройств такого типа рассчитывать не стоит.

Принцип работы генератора переменного тока


Устройства такого типа преобразуют механику в электроэнергию, вращая проволочную катушку в магнитном поле. Ток вырабатывается, когда силовые линии пересекают обмотку. До тех пор, пока магнитное поле соприкасается с проводником, в нем индуцируется электроток.

Идентичный принцип действует и в случае, если рамка вращается относительно магнита, пересекая силовые линии.

Основные достоинства генераторов переменного тока


В электростанциях с синусоидальной подачей тока отсутствует реактивная мощность. То есть весь запас электроэнергии (с вычетом потерь на проводах) расходуется на нужды потребителя, а не на поддержание работоспособности устройства.

Плюсами использования генераторов переменного тока являются:

  • Большая выходная мощность при одинаковых габаритах устройств постоянного и переменного тока;
  • Выработка электроэнергии на низких скоростях вращения ротора;
  • Проще конструкция и схема, соответственно, меньше узлов, нуждающихся в техобслуживании и ремонте;
  • Конструкция токосъемного узла отличается большей надежностью;
  • Больше эксплуатационный ресурс и меньше эксплуатационные затраты.


Дополнительное преимущество: агрегаты с трехфазным питанием можно использовать для питания высоковольтных потребителей.

Где применяются генераторы постоянного и переменного тока


Оба вида генераторов популярны в бытовой и промышленной сфере. Станции постоянного тока нашли применение в сфере транспорта. Так, в трамваях, троллейбусах обычно установлены двигатели, работающие на постоянном токе. Низковольтные устройства незаменимы для питания систем освещения в местах, где нет доступа к централизованной подачи электроэнергии. Например, на борту самолетов. Если большая мощность — не основополагающая характеристика электростанции, то генераторы постоянного тока отлично справятся с питанием оборудования в учебных, медицинских учреждениях, лабораториях. Полноценные дизельные электростанции постоянного тока используются на аэродромах для зарядки и питания бортовых систем летной техники. 


Электростанции переменного тока необходимы практически для всего остального. 99% того, что питается от централизованной сети — это устройства переменного тока. Соответственно, аварийное питание этих объектов так же должно осуществляться от соответствующего оборудования. 


Мototech специализируется на продаже электростанций различного типа. Поможем выбрать оптимальный вариант электростанции мощностью от 5 до 6000 кВА и конечно же, это будут электростанции переменного тока. Мы обеспечим сопроводительные строительные и электромонтажные работы, грамотную пуско-наладку и обслуживание устройств. С клиентами работают сотрудники с энергетическим образованием, поэтому квалифицированную информацию, ответы на вопросы и правильные расчеты характеристик в соответствии с вашими потребностями гарантируем.

Как работают генераторы | Электрические генераторы

Электрические генераторы — это автономные машины, которые обеспечивают электроэнергию, когда питание из местной сети недоступно. Промышленные генераторы часто используются для резервного питания объектов, предприятий или домов во время перебоев в подаче электроэнергии, но их также можно использовать в качестве основного источника питания в районах, где местная электрическая сеть недоступна или труднодоступна, например, при добыче полезных ископаемых и сельском хозяйстве или даже новые разработки и строительство.

Купить генератор можно практически для любых нужд. Некоторые электрические генераторы представляют собой небольшие портативные устройства, которые используются для кемпинга или хобби, чтобы обеспечить небольшое количество энергии для нескольких устройств. Другие представляют собой стационарные установки, которые могут питать весь дом. Промышленные генераторы еще более мощные, они способны обеспечить полную мощность производственных помещений, больниц и офисных комплексов.

Существуют дизельные генераторы, генераторы на природном газе, генераторы на пропане и генераторы на двух видах топлива. Ниже мы рассмотрим, как работают электрические генераторы и что вам нужно знать для установки и обслуживания генератора.

Как генераторы производят электричество?

Генераторы на самом деле не производят электричества. Вместо этого они преобразуют механическую или химическую энергию в электрическую энергию. Они делают это, улавливая силу движения и превращая ее в электрическую энергию, заставляя электроны из внешнего источника проходить через электрическую цепь. Генератор — это, по сути, электрический двигатель, работающий в обратном направлении.

Некоторые электрические генераторы, такие как, например, на плотине Гувера, огромны и производят огромное количество энергии, превращая мощность, создаваемую водяными турбинами, в электричество. Однако бытовые и коммерческие генераторы намного меньше по размеру и полагаются на более традиционные источники топлива, такие как дизельное топливо, газ и пропан, для создания механической энергии, которая затем может быть включена в цепь и индуцировать электрический ток.

После подачи электрического тока его направляют по медным проводам для питания внешних машин, устройств или целых электрических систем.

Современные генераторы можно отнести к принципу электромагнитной индукции Майкла Фарадея. Фарадей обнаружил, что когда проводник движется в магнитном поле, могут создаваться электрические заряды, которые направляются для создания потока тока. По сути, электрический генератор — это не что иное, как электромагнит — движущаяся проволока рядом с магнитом, чтобы направить поток электричества. Это похоже на то, как насос проталкивает воду через трубу.

Какие части электрического генератора?

Генератор состоит из девяти частей, и все они играют роль в подаче энергии туда, где она больше всего нужна. Частями генератора являются:

  1. Двигатель. Двигатель подает энергию на генератор. Мощность двигателя определяет, сколько электроэнергии может обеспечить генератор.
  1. Генератор . Здесь происходит преобразование механической энергии в электрическую. Генератор переменного тока, также называемый «генератором», содержит как движущиеся, так и неподвижные части, которые работают вместе для создания электромагнитного поля и движения электронов, вырабатывающих электричество.
  1. Топливная система . Топливная система позволяет генератору производить необходимую энергию. Система включает в себя топливный бак, топливный насос, трубу, соединяющую бак с двигателем, и возвратную трубу. Топливный фильтр удаляет мусор до того, как он попадет в двигатель, а форсунка нагнетает топливо в камеру сгорания.
  1. Регулятор напряжения . Этот компонент помогает контролировать напряжение производимого электричества. Это также помогает преобразовать электричество из переменного тока в постоянный, если это необходимо.
  1. Системы охлаждения и выпуска . Генераторы производят много тепла. Система охлаждения гарантирует, что машина не перегревается. Выхлопная система направляет и удаляет пары, образующиеся во время работы.
  1. Система смазки . Внутри генератора много мелких движущихся частей. Очень важно правильно смазывать их моторным маслом, чтобы обеспечить плавную работу и защитить их от чрезмерного износа. Уровни смазки следует проверять регулярно, каждые 8 ​​часов работы.
  1. Зарядное устройство . Батареи используются для запуска генератора. Зарядное устройство аккумулятора — это полностью автоматический компонент, который обеспечивает готовность аккумулятора к работе, когда это необходимо, путем подачи на него постоянного низкого уровня напряжения.
  1. Панель управления . Панель управления управляет всеми аспектами работы генератора, от запуска и рабочей скорости до выходных сигналов. Современные устройства даже способны определять падение или пропадание напряжения и могут автоматически запускать или выключать генератор.
  1. Основной узел/рама . Это корпус генератора. Это та часть, которую мы видим; структура, которая держит все это на месте.

Какое топливо нужно для электрических генераторов?

Современные электрические генераторы доступны с различными вариантами заправки. Дизельные генераторы являются самыми популярными промышленными генераторами на рынке. Бытовые генераторы чаще включают: генераторы природного газа или генераторы пропана, в то время как портативные генераторы меньшего размера обычно работают на бензине, дизельном топливе или пропане. Некоторые генераторы могут работать на двух видах топлива — как на бензине, так и на дизельном топливе.

 

 

Топливные баки генератора

Топливная система обеспечивает наличие в генераторе необходимого сырья для выработки электроэнергии путем запуска процесса внутреннего сгорания. Без топлива не может происходить горение, и генератор не может преобразовать созданную механическую энергию в электрическую. Топливо для генератора должно храниться на месте, чтобы при необходимости генератор можно было немедленно запустить в работу.

В зависимости от типа генератора и его применения топливные баки могут быть установлены на раме генератора или могут быть внешними баками, расположенными далеко от самого генератора. Как правило, чем больше генератор и чем дольше он должен работать, тем больше топливный бак. Генераторное топливо хранится в баках различной емкости, в зависимости от предполагаемого использования генератора и требуемой мощности. Резервуары могут располагаться над землей, под землей или на подбазе. Базовые баки предназначены для хранения менее 1000 галлонов топлива и расположены над землей, но ниже основания генераторной установки.

Надземные и подземные резервуары для хранения топлива для генераторов лучше подходят для нужд большой емкости. Подземные резервуары для хранения более дороги в установке, но они, как правило, служат дольше, поскольку защищены от непогоды. У обоих типов резервуаров для хранения топлива есть свои плюсы и минусы, но вы не будете одиноки в принятии решения. Топливные баки генераторов и топливные системы генераторов должны соответствовать нескольким требованиям правил и разрешений, прежде чем их можно будет установить, независимо от того, предназначена ли установка для бытового или коммерческого использования.

Основными нормами, регулирующими топливные баки генераторов в Соединенных Штатах, являются нормы и стандарты Национальной ассоциации противопожарной защиты (NFPA), особенно разделы NFPA 30 и NFPA 37. Таким образом, все запросы на топливный бак генератора должны быть представлены в штат Начальнику пожарной охраны на утверждение.

Чтобы определить минимальную емкость топливного бака, необходимо подумать о том, как вы собираетесь использовать генератор. Для коротких или нечастых отключений электроэнергии может быть приемлемым резервный генератор с меньшим резервуаром для хранения, однако вам придется заправлять резервуар чаще, чем вам придется заправлять большие резервуары. Резервуары большего размера могут потребоваться, если вы планируете питать большой коммерческий объект с помощью основного генератора или если вы подвержены длительным и частым перебоям в подаче электроэнергии.

Ваш поставщик генератора может помочь вам определить оптимальный размер топливного бака, чтобы обеспечить достаточное количество топлива, когда оно вам понадобится. Еще одна вещь, о которой следует помнить как при покупке генератора, так и при выборе резервуара для хранения топлива для генератора, — это стоимость и доступность топлива в вашем регионе. Перед покупкой генератора рекомендуется поговорить с местными поставщиками топлива, чтобы лучше понять стоимость и логистику, связанные с получением топлива для генератора.

Выхлопные системы генераторов и средства контроля выбросов

Поскольку машины работают на ископаемом топливе и работают непрерывно, даже если это время работы непостоянно, генераторы должны быть оснащены компонентами для их охлаждения и фильтрации выбросов. Системы охлаждения и вентиляции генераторов уменьшают и отводят тепло различными способами:

  • Вода. Вода может использоваться для охлаждения компонентов генератора. Этот тип системы охлаждения обычно ограничивается конкретными ситуациями или очень большими агрегатами мощностью 2250 кВт и выше.
  • Водород. Водород является очень эффективным хладагентом, который используется для поглощения тепла, выделяемого работающим генератором. Тепло передается в теплообменник и вторичный контур охлаждения, часто расположенные в больших градирнях на месте.
  • Радиаторы и вентиляторы. Генераторы меньшего размера охлаждаются с помощью комбинации стандартного радиатора и вентилятора.

Выхлопные газы генераторов аналогичны выхлопным газам других газовых или дизельных двигателей. Они включают в себя токсичные химические вещества, такие как углекислый газ, которые должны быть отфильтрованы и удалены из выбросов. Выхлопная система генератора справляется с этой задачей.

Выхлопные трубы подсоединяются к двигателю и направляют выхлопные газы вверх, наружу и в сторону от генератора и установки. Труба выходит за пределы здания, в котором находится генератор, и должна заканчиваться вдали от дверей, окон и других мест забора воздуха.

Помимо выхлопных систем, некоторые генераторы подлежат федеральному контролю за выбросами. Контролируемые выбросы генератора: оксид азота (NOx), углеводороды, окись углерода (CO) и твердые частицы.

Как правило, аварийные генераторы и генераторы, работающие менее 100 часов в год, не подпадают под действие федеральных требований по выбросам генераторов, однако на постоянно установленные основные и резервные генераторы распространяются федеральные требования по выбросам в соответствии с тремя правилами EPA:

  • Национальный стандарт выбросов опасных загрязнителей воздуха (NESHAP) – для поршневых двигателей внутреннего сгорания (RICE). 40 Свод федеральных правил, часть 63, подраздел ZZZZ. Также известен как правило RICE.
  • Стандарты характеристик нового источника (NSPS) – стандарты характеристик стационарных двигателей с искровым зажиганием . 40 CFR, часть 60, подраздел JJJJ. Также известен как правило искрового зажигания NSPS.
  • Стандарты характеристик стационарных двигателей внутреннего сгорания с воспламенением от сжатия . 40 CFR, часть 60, подраздел IIII. Также известен как правило сжатия Ignition NSPS.

Хорошей новостью является то, что многие новые генераторные установки уже соответствуют стандартам выбросов генераторов благодаря производственным усовершенствованиям. Старые генераторные установки могут быть унаследованы, что освобождает их от федеральных правил и подчиняется только государственным и местным стандартам выбросов. Требования к контролю выбросов различаются в зависимости от производителя, размера генератора и даты производства, поэтому лучший способ определить ваши требования к выбросам — это поговорить с вашим дилером или производителем генератора.

Для более подробного ознакомления с нормами выбросов см. информационный документ Cummins «Влияние норм выбросов Уровня 4 на электроэнергетику».

Панель управления генератором и автоматический ввод резерва (АВР)

Одним из наиболее важных компонентов современных генераторов является панель управления генератором. Панель управления — это мозг генератора, а также пользовательский интерфейс генератора; точка, в которой вы будете получать доступ и управлять работой генератора.

Многие панели управления оснащены автоматическим переключателем ввода резерва (АВР), который постоянно контролирует поступающую мощность. Когда уровень мощности падает или полностью отключается, АВР подает на панель управления сигнал о запуске генератора. Аналогичным образом, когда поступающее питание восстанавливается, АВР подает на панель управления сигнал об отключении генератора и повторном подключении к электросети.

В дополнение к круглосуточному мониторингу, панель управления генератором предоставляет обширную информацию для руководителей объектов:

  • Датчики двигателя предоставляют важную информацию об уровнях масла и жидкостей, напряжении аккумуляторной батареи, частоте вращения двигателя и часах работы. Во многих генераторных установках панель даже автоматически выключает двигатель при обнаружении проблемы с уровнем жидкости или другими аспектами работы генератора.
  • Датчики генератора предоставляют ценную информацию о выходном токе, напряжении и рабочей частоте.

Какое обслуживание требуется генератору?

Генераторы являются двигателями и требуют регулярного обслуживания двигателей для обеспечения их правильной работы. Поскольку многие генераторы используются для обеспечения резервного питания в случае чрезвычайных ситуаций, для операторов крайне важно проводить регулярные проверки и проверки своих генераторных установок, чтобы гарантировать, что машина будет работать так, как нужно, когда это необходимо.

Наилучший план технического обслуживания генератора — тот, который рекомендован производителем, но, как минимум, все планы технического обслуживания генератора должны включать регулярное и плановое:

  • Проверка и удаление изношенных деталей.
  • Проверка уровней жидкостей, включая охлаждающую жидкость и топливо.
  • Осмотр и очистка аккумулятора.
  • Проведение проверки блока нагрузки на генератор и автоматический ввод резерва.
  • Проверка панели управления на точность показаний и индикаторов.
  • Замена воздушного и топливного фильтров.
  • Проверка системы охлаждения.
  • Смазка деталей по мере необходимости.

Обязательно ведите журнал технического обслуживания для ведения учета. Включите все показания, уровни жидкости и т. д., а также дату и показания счетчика моточасов генератора. Эти записи можно сравнивать с будущими записями и использовать для обнаружения отклонений или изменений в работе, которые могут указать вам на скрытые проблемы, которые могут стать серьезными проблемами, если их не проверить.

Генераторы могут служить десятилетиями при правильном обслуживании. Эти простые небольшие вложения со временем окупятся за счет экономии на дорогостоящем ремонте или даже полной замене генераторной установки. Если техническое обслуживание генератора не является чем-то, чем вы можете управлять своими силами, многие дилеры генераторов предлагают контракты на техническое обслуживание или могут порекомендовать квалифицированных специалистов по техническому обслуживанию, которые помогут вам поддерживать ваш генератор в отличной форме год за годом, год за годом. Время и деньги потрачены не зря, если они могут поддерживать ваш бизнес в рабочем состоянии, когда отключается электричество.

Как определить размер генератора?

Самая важная часть установки резервного или основного генератора — правильно подобрать размер. Негабаритные генераторы не смогут предоставить вам всю необходимую мощность, и вам придется выбирать, какие электрические компоненты будут получать питание от генератора, а какие нет. Хуже того, работа малогабаритной машины может привести к перегрузке устройства, что приведет к отключению генератора в середине работы, может привести к преждевременному отказу генератора и, возможно, к повреждению подключенных к нему устройств.

Некоторые считают допустимой установку резервного генератора меньшего размера, чем необходимо, поскольку он не будет работать все время, но это ошибочная логика, поскольку, когда требуется резервный генератор, он должен питать все предприятие. Другими словами, вам по-прежнему требуется, чтобы генератор обеспечивал определенное количество энергии, независимо от того, работает ли генератор постоянно или только в аварийном режиме.

Как правило, лучше купить генератор большего размера, чем маленький, но и у генераторов больших размеров есть свои недостатки. Установка генератора, который обеспечивает гораздо большую мощность, чем вам нужно, является пустой тратой ресурсов. Вы перерасходуете на саму генераторную установку, потратите на топливо и другие расходные материалы больше, чем вам нужно, а также рискуете повредить подключенные к генератору устройства.

Мощность генераторов варьируется от 5 кВт до 50 кВт для жилых помещений и от 50 кВт до более 3 МВт для коммерческих и промышленных рынков, что дает покупателям широкий выбор, но также вызывает множество вопросов относительно того, какой генератор подходит для них. Правильный выбор размера генератора включает в себя несколько факторов и соображений. Лучший способ убедиться, что вы правильно определили размер генератора, — это проконсультироваться с сертифицированным электриком. Электрик может определить ваши точные потребности в электроэнергии, мощность вашей электрической системы и любые необходимые обновления, а также то, как лучше всего установить генератор.

Тем не менее, вы можете сами составить представление о своих потребностях в электроэнергии:

  • Составив список всего, что должно питаться от генератора .
  • Отметив пусковую и рабочую мощность каждого из этих элементов . Вы можете найти эту информацию на идентификационной табличке устройства или в руководстве пользователя.
  • Расчет общей требуемой мощности в кВА или кВт . Некоторые устройства обеспечивают требования к мощности в амперах. Вам нужно будет преобразовать ампер в кВт или кВА, чтобы определить требования к мощности. Используйте этот калькулятор мощности для расчета конверсий.

Когда у вас будет полная мощность, необходимая для объекта, вы можете купить генератор, который наилучшим образом соответствует вашим потребностям. Подержанные и излишки генераторов — отличный способ сэкономить деньги и при этом получить качественную машину. Поскольку генераторы настолько прочны и долговечны, даже бывшие в употреблении генераторы в хорошем состоянии имеют большой срок службы. Поставщики генераторов с хорошей репутацией проверят устройство на наличие проблем и изучат журнал технического обслуживания и, возможно, даже произведут необходимый ремонт, прежде чем выставить генератор на продажу. Пока у вас есть запись о техническом обслуживании и вы знаете историю генератора, нет причин уклоняться от бывших в употреблении генераторов. Избыточные генераторы предлагают аналогичные преимущества, но без них или с очень небольшим количеством часов работы машины.

Где я могу купить генератор?

В США есть множество поставщиков генераторов, от магазинов товаров для дома до самих производителей генераторов. Если вы планируете купить генератор как бизнес-актив и способ держать свои двери открытыми во время чрезвычайной ситуации, не торопитесь и работайте с дилером, брокером или поставщиком, имеющим многолетний опыт. Найдите продавца, который ответит на ваши вопросы, оценит вашу ситуацию и подскажет, какое решение о покупке лучше всего подходит для ваших конкретных потребностей.

Команда Critical Power Products & Services имеет более чем 25-летний опыт приобретения и утилизации промышленного энергетического оборудования, включая генераторы. Мы продаем бывшие в употреблении генераторы и излишки генераторов, прошедшие тщательную проверку и испытания, малым предприятиям и компаниям из списка Fortune 500 по всей территории США. потребностей с одним из наших менеджеров проектов. Мы уверены, что сможем помочь вам учесть все факторы при покупке генератора и подобрать идеальную машину для работы!

Как работает генератор?

Генераторы — это полезные устройства, которые обеспечивают подачу электроэнергии во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание деловых операций. Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.

Как работает генератор?

Электрический генератор представляет собой устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.

Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию для принудительного перемещения электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь. Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, если рассматривать генератор как аналог водяного насоса, который вызывает поток воды, но фактически не «создает» воду, протекающую через него.

Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что описанный выше поток электрических зарядов может быть вызван перемещением электрического проводника, такого как проволока, содержащая электрические заряды, в магнитном поле. Это движение создает разность потенциалов между двумя концами провода или электрического проводника, что, в свою очередь, вызывает протекание электрических зарядов, генерируя электрический ток.

Основные компоненты генератора

Основные компоненты электрогенератора можно в общих чертах классифицировать следующим образом:

  • Двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Системы охлаждения и выхлопа
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основная сборка/рама

Описание основных компонентов генератора приведено ниже.

Двигатель

Двигатель является источником входной механической энергии для генератора. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может обеспечить генератор. Есть несколько факторов, которые необходимо учитывать при оценке двигателя вашего генератора. Следует проконсультироваться с производителем двигателя для получения полных технических характеристик двигателя и графиков технического обслуживания.

(a) Тип используемого топлива. Генераторные двигатели работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженном или газообразном виде) или природный газ. Двигатели меньшего размера обычно работают на бензине, а двигатели большего размера работают на дизельном топливе, сжиженном пропане, пропановом газе или природном газе. Некоторые двигатели также могут работать на двух видах топлива: дизельном и газовом.

(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV. Двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускной и выпускной клапаны двигателя расположены в головке цилиндра двигателя, а не установлены на двигателе. блокировать. Двигатели с верхним расположением клапанов имеют ряд преимуществ перед другими двигателями, например:

• Компактный дизайн
• Упрощенный рабочий механизм
• Прочность 90 317
• Удобен в работе
• Низкий уровень шума при работе
• Низкий уровень выбросов

Однако двигатели с верхним расположением клапанов также дороже других двигателей.

(c) Чугунная гильза (CIS) в цилиндре двигателя – CIS представляет собой накладку в цилиндре двигателя. Снижает износ и обеспечивает долговечность двигателя. Большинство двигателей с верхним расположением клапанов оснащены CIS, но важно проверить эту функцию в двигателе генератора. CIS — недорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.

 

Генератор

Генератор переменного тока, также известный как «генератор», представляет собой часть генератора, которая вырабатывает электрическую мощность на основе механического входа, подаваемого двигателем. Он содержит сборку неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, что, в свою очередь, генерирует электричество.

(a) Статор – это неподвижный компонент. Он содержит набор электрических проводников, намотанных в витках на железный сердечник.

(b) Ротор/якорь – это движущийся компонент, создающий вращающееся магнитное поле одним из следующих трех способов:

(i) Индукционный генератор. Известны как бесщеточные генераторы переменного тока, которые обычно используются в больших генераторах.
(ii) Постоянные магниты — обычно используются в небольших генераторах переменного тока.
(iii) С помощью возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через узел токопроводящих контактных колец и щеток.

Ротор создает движущееся магнитное поле вокруг статора, которое вызывает разность потенциалов между обмотками статора. Это производит переменный ток (AC) на выходе генератора.

Ниже перечислены факторы, которые необходимо учитывать при оценке генератора переменного тока генератора:

(a) Металлический корпус в сравнении с пластиковым. Цельнометаллическая конструкция обеспечивает долговечность генератора переменного тока. Пластиковые корпуса со временем деформируются, что приводит к оголению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.

(b) Шариковые подшипники по сравнению с игольчатыми подшипниками. Шариковые подшипники предпочтительнее и служат дольше.

(c) Бесщеточная конструкция. Генератор переменного тока, в котором не используются щетки, требует меньше обслуживания, а также производит более чистую энергию.

 

Топливная система

Топливный бак обычно имеет достаточную емкость, чтобы поддерживать работу генератора в среднем от 6 до 8 часов. В случае небольших генераторных установок топливный бак является частью основания генератора или устанавливается на верхней части рамы генератора. Для коммерческого применения может потребоваться установка внешнего топливного бака. Все такие установки подлежат утверждению Департаментом городского планирования. Щелкните следующую ссылку для получения дополнительной информации о топливных баках для генераторов.

К общим характеристикам топливной системы относятся следующие:

(a) Соединение трубопровода от топливного бака к двигателю. Подающий трубопровод направляет топливо из бака в двигатель, а обратный трубопровод направляет топливо из двигателя в бак.

(b) Вентиляционная трубка топливного бака. Топливный бак имеет вентиляционную трубку для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака следите за металлическим контактом между заправочным пистолетом и топливным баком, чтобы избежать искрения.

(c) Перепускной штуцер от топливного бака к сливной трубе – Это необходимо для того, чтобы любой перелив во время заправки бака не привел к проливанию жидкости на генераторную установку.

(d) Топливный насос – перекачивает топливо из основного бака хранения в расходный бак. Топливный насос обычно имеет электрический привод.

(e) Топливный водоотделитель/топливный фильтр — отделяет воду и посторонние частицы от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

(f) Топливная форсунка – распыляет жидкое топливо и впрыскивает необходимое количество топлива в камеру сгорания двигателя.

Регулятор напряжения
Как видно из названия, этот компонент регулирует выходное напряжение генератора. Механизм описан ниже для каждого компонента, который играет роль в циклическом процессе регулирования напряжения.

(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток. Регулятор напряжения потребляет небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбуждения.

(2) Обмотки возбудителя: преобразование постоянного тока в переменный ток. Обмотки возбудителя теперь работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток. Обмотки возбудителя подключены к устройствам, известным как вращающиеся выпрямители.

(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный – они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор/якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора/якоря.

(4) Ротор/якорь: преобразование постоянного тока в переменное напряжение. Ротор/якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.

Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения производит меньший постоянный ток. Как только генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, достаточный для поддержания выходной мощности генератора на полном рабочем уровне.

При добавлении нагрузки к генератору его выходное напряжение немного падает. Это приводит в действие регулятор напряжения, и начинается описанный выше цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет исходной полной рабочей мощности.

Система охлаждения и выпуска
(а) Система охлаждения
Постоянное использование генератора приводит к нагреву его различных компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, образующегося в процессе.

Неочищенная/пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше. Водород иногда используется в качестве хладагента для обмоток статора крупных генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему рядом с очень крупными генераторами и небольшими электростанциями часто стоят большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генератор и работают как первичная система охлаждения.

Необходимо ежедневно проверять уровень охлаждающей жидкости генератора. Систему охлаждения и насос сырой воды следует промывать через каждые 600 часов, а теплообменник следует чистить через каждые 2400 часов работы генератора. Генератор следует размещать в открытом и проветриваемом помещении с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) предписывает, чтобы со всех сторон генератора оставалось минимальное пространство в 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.

(б) Выхлопная система
Выхлопные газы генератора ничем не отличаются от выхлопных газов любого другого дизельного или бензинового двигателя и содержат высокотоксичные химические вещества, с которыми необходимо правильно обращаться. Следовательно, необходимо установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент нельзя не подчеркнуть, поскольку отравление угарным газом остается одной из наиболее распространенных причин смерти в районах, пострадавших от ураганов, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.

Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно крепятся к двигателю с помощью гибких соединителей, чтобы свести к минимуму вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба выходит наружу и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не соединена с выхлопной системой любого другого оборудования. Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для работы вашего генератора получать разрешение от местных властей, чтобы убедиться, что вы соблюдаете местные законы и защищаете от штрафов и других санкций.

Система смазки
Поскольку генератор содержит движущиеся части двигателя, ему требуется смазка для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе. Вы должны проверять уровень смазочного масла каждые 8 ​​часов работы генератора. Вы также должны проверять наличие утечек смазки и заменять смазочное масло каждые 500 часов работы генератора.

Зарядное устройство
st e art функция генератора работает от батареи. Зарядное устройство батареи поддерживает заряд батареи генератора, подавая на нее точное «плавающее» напряжение. Если плавающее напряжение очень низкое, аккумулятор останется недозаряженным. Если плавающее напряжение очень высокое, это сократит срок службы батареи. Зарядные устройства обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений настроек. Выходное напряжение постоянного тока зарядного устройства установлено на уровне 2,33 В на элемент, что является точным значением плавающего напряжения для свинцово-кислотных аккумуляторов. Зарядное устройство имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.

Панель управления
Это пользовательский интерфейс генератора, содержащий положения для электрических розеток и органов управления. В следующей статье приведены дополнительные сведения о панели управления генератора. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.

(a) Электрический запуск и отключение — панели управления автоматическим запуском автоматически запускают генератор при отключении электроэнергии, контролируют работу генератора и автоматически выключают агрегат, когда он больше не нужен.

(b) Датчики двигателя. Различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *