Давление топлива. Как его замерить и какое оно должно быть
Андрей
28 комментариев
Автолюбителю на заметку, Диагностика неисправностей, Расход топлива, Ремонт двигателя, Топливная система
Содержание
⏰Время чтения: 9 мин.
Рассмотрим такую интересную тему, как давление топлива в инжекторных автомобилях и его влияние на работу двигателя в разных режимах. Так что же такое давление топлива?
Не всё так просто, как кажется на первый взгляд!
Любая диагностика двигателя должна начинаться с грамотного замера давления топлива. Это аксиома.
Не буду голословно описывать влияние давления топлива на работу двигателя, думаю это и так понятно, а пойдём дальше к фактам и законам физики.
К системе подачи топлива относятся все те элементы, которые необходимы для перемещения топлива из топливного бака к форсункам.
Топливо забирается из бака электрическим топливным насосом и под избыточным давлением подаётся в топливную рампу. Рабочее давление и производительность топливного насоса подобраны таким образом, чтобы обеспечить надежную работу двигателя на всех режимах работы. Регулятор давления топлива обеспечивает отвод некоторого количества топлива назад в топливный бак, что позволяет поддерживать необходимое давление топлива для работы топливных форсунок.
В нашем с Вами мире существует два основных способа доставлять топливо из бензобака к инжекторному двигателю – рециркуляционного и тупикового типа (с обраткой и без обратки). Именно система тупикового типа служит на автомобилях Шевроле Лачетти, Nubira, Daewoo Gentra, Ravon Gentra, Chevrolet Klan, Авео и т.д.
А вообще, почти каждый автопроизводитель имеет в своём ряду модели как с системой рециркуляционного типа, так и с системой тупикового типа, будь-то Ваз или Mitsubishi.
Система рециркуляционного типа топливоподачи
1 – штуцер для проверки давления топлива, 2 – топливная рампа, 3 – крепление трубопровода, 4 – регулятор давления топлива, 5 – топливный модуль, 6 – топливный фильтр, 7 – возвратная магистраль, 8 – подающая магистраль, 9 – форсунки
В этой системе топливо из бака подаётся топливным насосом через фильтр к топливной рампе, а излишки через регулятор давления отводятся по возвратной магистрали обратно в бак. Регулятор поддерживает давление в пределах 2,8 – 3,2 бар (1 бар = 0,98692 атм.). Именно в пределах! Дальше это обсудим.
Система тупикового типа топливоподачи
1 – штуцер для проверки давления топлива, 2 – топливная рампа, 3 – форсунки, 4 – топливопровод, 5 – топливный бак, 6 – топливный насос, 7 – топливный фильтр
Как видно из рисунка, в системе тупикового типа топливоподачи нет обратной сливной магистрали. Казалось бы, на этом все различия закончились, но это не так. Эти две системы кардинально различаются по принципу работы. В том числе и по регулированию давления топлива. В данной системе регулятор давления установлен в топливном модуле внутри бензобака и поддерживает постоянное давление топлива, равное 4-ём барам. Без каких-либо пределов, а ровно 4 бара! Об этом дальше.
Примечание. На разных авто данное давление может немного отличаться. Например, составлять 3.8 бар. Но ключевая особенность – это то, что давление постоянно.
Регулятор давления топлива
Зачем регулировать давление топлива? Именно регулировать?
Забегая вперёд, скажу, что настоящий регулятор давления топлива устанавливается только в системах рециркуляционного типа. В системах тупикового типа, он хоть и называется регулятором, но на самом деле ничего не регулирует. Я бы его назвал ограничителем с обратным клапаном.
Ну пока разберёмся, зачем же всё-таки регулировать давление топлива.
Самое большое влияние регулирование давления топлива оказывает на работу двигателя в переходных режимах, особенно в момент нажатия педали газа и переходе с режима холостого хода в режим нагрузок. Некоторые скажут, что это и так понятно, мол, нагрузка возрастает и, соответственно, нужно больше топлива. Это утверждение верно только от части и никак не относится к регулированию давления топлива. Ведь можно влупить 4 атмосферы и форсункам хватит давления на любых режимах. Зачем же тогда регулировать? Давайте разберёмся.
Для правильного смесеобразования ЭБУ управляет временем открытия форсунок, но никак не количеством топлива. ЭБУ просто физически не может видеть этого количества. Из этого следует, что, как хочешь, но нужно сделать постоянную зависимость между временем открытия форсунки и количеством топлива, прошедшим через форсунку за это время. Другими словами, за одну миллисекунду всегда и при любых условиях через форсунку должно пройти одно и тоже количество топлива! А что этому мешает?
А мешает этому постоянно меняющееся давление во впускном коллекторе. Ведь форсунка подаёт топливо именно во впускной коллектор.
Все мы знаем, что на холостом ходу в коллекторе очень сильно падает давление – до 30 кПа. А нормальное атмосферное давление составляет 100 кПа. Иными словами, в коллекторе создаётся очень большое разрежение.
А теперь представим такую ситуацию. Двигатель работает на холостом ходу, ЭБУ открывает форсунку на 2 мс. Из-за того, что в коллекторе большое разрежение, то топливо из форсунки буквально высасывает! При нажатии на педаль газа под нагрузкой, давление в коллекторе резко возрастает и топливо из форсунки уже не высасывает, а просто брызгает под давлением. Давление и время открытия форсунки, допустим, в обоих случаях одинаковое. Что же получается? А получается то, что на холостом ходу топливо из форсунки выходит под действием разрежения + давление в рампе, а при открытой дроссельной заслонке при нагрузке – только под давлением в рампе.
Очевидно, что при одном и том же времени открытия форсунки, на холостом ходу через неё пройдёт большее количество топлива, чем при открытой дроссельной заслонке и нагрузке на мотор. Это как открыть водопроводный кран на одну минуту, но в одном случае просто набирать воду в ведро, а во втором сделать это при помощи мощного насоса. Естественно, во втором случае воды мы наберём больше за одно и то же время. Думаю понятно.
Так вот, как это отразится на работе двигателя? При нажатии на педаль акселератора, двигателю необходимо больше топлива для развития мощности, а мы даём ему, наоборот, меньше и получается провал при нажатии педали газа!
Что же делать? Выход в том, что нужно регулировать давление топлива относительно давления во впускном коллекторе. То есть, разница между давлением во впускном коллекторе и топливной рампе должна быть всегда и при любых условиях постоянной! Регулятор давления топлива поддерживает постоянный перепад давления на форсунках (разницу между давлением топлива и разряжением во впускном коллекторе) при изменении разряжения во впускном коллекторе. В противном случае, если эта разница будет меняться, то при одном и том же времени открытия форсунки количество топлива будет изменяться, в соответствии с величиной разрежения во впускном коллекторе двигателя.
Как видно, давление топлива меняется, но всегда остаётся одинаковым по отношению к разрежению во впускном коллекторе! Другими словами, вместо стрелок можно представить форсунки и получается, что на них всегда одинаковый перепад давления.
Вот тут и играют роль пределы давления топлива 2,8 – 3,2 бар. Некоторые их путают с допустимыми пределами. И при измерении давления топлива, получая, допустим, 3,2 бара при работе двигателя на холостом ходу, считают, что улаживаются в допустимые “пределы”. Хотя на холостом ходу должно быть 2,8 бар, при резком нажатии педали газа должно быть 3,2 бар, так как разрежение перестаёт действовать на форсунку и нужно это компенсировать увеличением давления.
Вот поэтому он и называется – регулятор давления топлива.
Внутреннее пространство регулятора давления топлива обычно разделено диафрагмой на две камеры: воздушную камеру с пружиной и топливную камеру. Топливо, подаваемое топливным насосом, поступает в топливную камеру регулятора давления. Под действием давления топлива на диафрагму, клапан перемещается вверх до тех пор, пока не наступит равновесие между давлением топлива с одной стороны и силой упругости пружины и давления воздуха во впускном коллекторе с другой стороны. Избыточное топливо возвращается в бак через клапан. Камера с пружиной соединяется вакуумным шлангом с впускным коллектором двигателя.
Как регулируется давление в системах топливоподачи тупикового типа (без обратки)?
А никак. Здесь применено другое решение.
В топливном модуле внутри топливного бака находится обратный клапан с ограничителем давления до 4 бар
В пособиях по ремонту и авто литературе почему-то упускают этот факт, а чаще, вообще, пишут неправду, вводя в заблуждение автовладельцев. В системе тупикового типа давление всегда выше, чем в системах с рециркуляцией и у него нет “пределов” – оно всегда постоянно!
Зачем выше давление? В системах с рециркуляцией топливо перекачивается по кругу и бензин циркулирует постоянно, охлаждая топливную рампу. Если не будет охлаждения, тогда топливо в рампе может закипеть!
А как мы знаем из уроков физики, при повышении давления – у жидкостей повышается температура кипения. Вот для этого и повышают давление в системах топливоподачи “без обратки”.
Поэтому, если в сервисе замерили давление топлива на Вашем автомобиле с системой тупикового типа и оно составило 3 атм., а Вам рассказывают, что давление в норме и топлива хватит, то уматывайте с этого сервиса, как можно быстрее.
Важно понимать, что такое давление необходимо не столько для достаточности топлива (двигатель и при 2,5 атм. будет работать), сколько для предотвращения его закипания! А если топливо закипит, то о нормальной работе двигателя можно забыть.
Какое давление топлива у Шевроле Лачетти
В литературе и на сайтах по ремонту Шевроле Лачетти указывается, что давление топлива в данном автомобиле составляет 2,8 – 3,2 бар. Я не знаю, как и чем они измеряют, а может и не измеряют вовсе, а перепечатывают друг у друга, но в моих измерениях на всех авто всегда норма – 4 бара и никак иначе.
Такое же давление топлива и на других авто с тупиковой системой топливоподачи, например, Шевроле Авео и многих других, включая ВАЗы с системой без обратки. И на разных режимах работы двигателя оно не изменяется!
А как же тогда быть с разрежением во впускном коллекторе и количеством топлива?
Для этих целей в прошивку электронного блока управления двигателем вводится дополнительный параметр – коррекция времени впрыска
Как только мы нажимаем на педаль газа и в коллекторе возрастает давление, ЭБУ мгновенно применяет коррекцию. В этот момент впрыск рассчитывается уже по формуле длительность впрыска + коррекция времени впрыска. В нашем примере это 2мс + 0,7мс = 2,7мс.
То есть, за счёт небольшого увеличения времени впрыска в этот момент, количество топлива через форсунку пройдёт одинаковое, что в режиме холостого хода, что во время нажатия педали газа.
Некоторые путают этот параметр и считают, что так ЭБУ добавляет топлива при разгоне. Это в корне не так. Коррекцией времени впрыска ЭБУ на самом деле не даёт уменьшится количеству топлива, проходящему через форсунку за 1мс из-за резкого повышения давления во впускном коллекторе!
Проблемы с давлением топлива
Представим, что топливный насос износился и не может создать давление в 4 бара или ограничитель давления прохудился и также не держит давление в 4 бара. Допустим, давление не поднимается выше 2,5 бар. В таблицах прошивки ЭБУ есть чёткий алгоритм действий, при каких условиях производить ту или иную коррекцию времени впрыска. Но ЭБУ не видит, что давление не 4 бара, а всего 2,5 и продолжает делать свою работу по вписанным в таблицы алгоритмам. А из-за пониженного давления в рампе через форсунки проходит меньшее количество топлива, чем положено. Соответственно, и во время коррекции времени впрыска, топлива будет проходить недостаточно за то время, которое даёт ЭБУ. Так мы получим провал во время нажатия педали газа.
Представим обратную ситуацию. Регулятор или ограничитель давления заклинили в открытом положении. Давление возросло и стало выше положенного. Это тоже не есть хорошо. Это приведёт к рывкам в переходных режимах, перерасходу топлива. Такие же симптомы и при негерметичности форсунок.
Как замерить давление топлива
Замерить давление топлива совсем не сложно. Те, кто не любит пачкать руки, может это сделать на проверенном СТО с адекватными специалистами.
А те, кто любит всё делать сам, может собрать устройство из обычного манометра и шлангов или купить специальный комплект для измерения давления топлива, давления масла и ещё много чего
В нём имеется много переходников под различные автомобили. Но под Шевроле Лачетти 1.6 нет ни в одном комплекте. Почему? Потому что и здесь экономия на мелочах взяла верх. Сэкономили, не установив копеечный штуцер с золотником в рампу для проверки давления топлива.
Поэтому, чтобы замерить давление топлива на Шевроле Лачетти, необходимо врезаться через тройник либо на входе в рампу
Либо в возвратную магистраль на топливном модуле под задним диваном
В качестве тройника можно использовать тройник топливной системы инжекторных ВАЗов
Сбрасываем давление топлива. Как это сделать подробно изложено в статье Замена топливного фильтра Шевроле
Снимаем топливопровод со штуцера топливного модуля.
На штуцер одеваем тройник. К центральному штуцеру тройника подключаем шланг от манометра, а к боковому штуцеру нужно подключить отключенный топливопровод возвратной магистрали.
Топливопровод просто так к боковому штуцеру не подключишь. Для этого нужен переходник. Его роль отлично играет штуцер от топливного фильтра. Его необходимо отрезать и шлангом соединить с боковым штуцером тройника
Получается что-то типа такого
1 – к манометру, 2 – возвратная топливная магистраль
Необходимо несколько раз включить/выключить зажигание, чтобы насос накачал необходимое давление и запустить двигатель. Давление должно быть 4 бара и не изменяться, чтобы Вы не делали с двигателем
Примечание. Допускается изменение давления при резких прогазовках, но не более чем на 0.1-0.2 бара
Более подробно про замер давления топлива на Шевроле Лачетти изложено на странице Замер давления топлива. Там также подробно описан процесс изготовления устройства для измерения давления и замер производился возле рампы.
Также стоит отметить, что после остановки двигателя, давление не должно сразу падать. Это значит, что обратный клапан исправный. Если у Вас двигатель не всегда запускается с первого раза, тогда уделите обратному клапану особое внимание.
А на автомобилях с рециркуляцией и регулятором давления топлива, значения манометра должны изменятся с 2,8 бар на холостом ходу до 3,2 бара при нажатии на педаль газа или при снятии вакуумного шланга с регулятора давления. При остановке двигателя, давление также не должно сразу падать.
К слову, манометр можно купить в любом строительном магазине. Лучше брать со шкалой 6 бар.
А учитывая небольшую себестоимость данного самодельного устройства, то считаю, что оно должно быть в гараже любого автолюбителя-самоделкина.
Как замерить давление топлива. Видео
Более подробно о замере давления топлива смотрите на видео
https://youtu. be/gzQhSU_AhIk
По теме:
Давление в топливной системе с распределенным впрыском: полная проверка и вердикт
Полезность проверки давления в топливной системе сложно недооценить. Ведь по манометру мы можем судить о состоянии как ведущих элементов (бензонасос и регулятор давления топлива), так и копеечных расходников, как-то фильтры тонкой и грубой очистки. При желании в фокус диагностики можно включить форсунки и отдельные участки топливопровода. Измерения, необходимо признать, серьезные – без специальной аппаратуры и технических знаний не обойтись! Чем, как и где мерить давление в топливосистеме – рассказывают эксперты Autobann.su.
Содержание
- 1 Чем мерить?
- 2 Как проверить топливную систему в домашних условиях?
- 2.1 Давление в топливной рампе
- 2.2 Регулятор давления топлива – исправен ли он?
- 2.3 Проверка бензонасоса
- 2.4 Диагностика фильтра тонкой очистки
- 2.5 А что же форсунки?
Чем мерить?
Безусловно, специальный набор со штуцерами, шлангочками и манометром – идеальный выбор. Но, если такового в наличии нет, то комплект можно собрать из подручных средств.
Центральное звено измерительной аппаратуры – манометр. Во время измерений максимальное давление будет колебаться в пределах 6 атмосфер, поэтому прибор должен быть рассчитан минимум на 7-8 атмосфер. Что же касается градуировки шкалы, то удобнее, чтобы она была именно в атмосферах.
Ценный практический совет – использовать манометр для измерения давления в шинах: шкала удобна, а условный проход трубки составляет 8 мм. Стоит отметить, что газовый манометр также подходит для подобных целей. Впрочем, диаметр выходного штуцера у него, как правило, больше. Например, для прибора на 1,0 МПа эта величина составляет уже 9 мм.
Внимание! 0,1 МПа – это примерно 1 атмосфера.
В дополнение к манометру необходим резиновый шланг и пара хомутов. Это комплект минимум. Если понадобится глушить регулятор давления топлива на системах без «обратки» или мерить давление на входе в топливную рампу, то потребуются заглушка и переходной штуцер соответственно. Поскольку конструкция коммутирующего узла между топливопроводом и рампой может быть различной, то переходник необходимо подбирать по месту. В первом приближении стоит отметить, что бывают резьбовые и быстросъемные конструкции.
Как проверить топливную систему в домашних условиях?
Первой точкой замера по умолчанию является выход из топливной рампы. Здесь мы аттестуем всю систему в комплексе и регулятор давления топлива в частности. Оценка состояния форсунок выполняется на основании измерения давления на входе в рампу и на выходе из нее. А по напору на выходе из насоса и перед топливной рампой мы можем судить как о состоянии самого насоса, так и фильтра тонкой очистки.
Давление в топливной рампе
Отыскав под капотом трубку, распределяющую бензин по форсункам, нащупываем на ней пластмассовый колпачок. Его размеры и фактура практически идентичны тем, что на колесах. Под этой заглушкой находится привычный нам золотник. Узел необходим для того, чтобы стравливать избыточное давление из топливной магистрали после недавней остановки двигателя, например, при замене фильтра тонкой очистки.
Стравить топливо из магистрали проще простого. Достаточно нажать на золотник, подставив перед этим баклажку или тряпку. Перед подсоединением манометра этот самый ниппель необходимо выкрутить по принципу, аналогичному демонтажу колесного золотникового стержня.
Манометр подключается к топливной рампе с помощью шланга. Во избежание протечек и срывов трубка в районе штуцеров обжимается хомутами. Смонтировав аппаратуру, заводим двигатель и первым делом проверяем, не протекает ли бензин в местах подсоединения измерительной аппаратуры. Если все в порядке, приступаем к снятию показаний.
Системы с полноценной «обраткой» и без нее выдают различные цифры на манометре. Для начала рассмотрим диагностику топливосистемы с обратной магистралью:
- После пуска мотора давление в топливной рампе должно быть 2,5-2,7 атмосфер.
- При перегазовке напор должен увеличиваться до 3 атмосфер.
У систем с РДТ, расположенным в корпусе насоса, цифры должны быть 3,8 и 4 атмосферы соответственно. Кратковременные колебания давления в пределах 0,2 атмосфер свидетельствуют о засорении фильтра грубой очистки (приемная сетка бензонасоса). Причиной этого является посредственная забота АЗС о сберегающих емкостях, наблюдаемая, как правило, у аутсайдеров рейтинга заправок по качеству бензина.
Регулятор давления топлива – исправен ли он?
Продолжая осмотр топливной системы, стоит проверить регулятор давления топлива, деталь, обеспечивающую постоянство напора бензина в магистрали. На топливосистемах с «обраткой» этот элемент расположен в топливной рампе, а шланг, идущий от него, как раз-таки именуется обратной магистралью.
Сняв шланг, связывающий РДТ с впускным коллектором, давление в рампе должно подняться до 3,0-3,2 атмосферы. Незначительное отклонение стрелки после отсоединения патрубка (в пределах 0,2 атм.) указывает на необходимость проверки насоса. Что характерно для неисправного регулятора давления бензина, так это одинаковое давление как при отсоединении патрубка РДТ-впускной коллектор, так и при обратном присоединении.
Касаемо «инжекторов» без обратной магистрали: на неисправный регулятор давления топлива здесь указывает напор менее 3,8 атмосфер при исправном насосе. Разумеется, чтобы быть уверенным в диагнозе, необходимо проверить и нагнетающую аппаратуру, и фильтр тонкой очистки.
Проверка бензонасоса
На системах с регулятором давления топлива, расположенным возле форсунок, достаточно пережать обратную магистраль (выходит из РДТ) и замерить давление в рампе:
- 6 атмосфер и более выдает новый и полностью исправный насос.
- 5 атм. свидетельствует о внушительном износе нагнетающего агрегата, но эксплуатацию можно временно продолжить.
- 4 атмосферы и менее – насосная станция неисправна или забит фильтр тонкой очистки. По этой причине работа мотора подобна детонации двигателя на всех оборотах.
Когда РДТ установлен в корпусе бензонасоса, проверку необходимо проводить прямо на выходе из нагнетателя: откидываем фишку топливопровода, идущего на фильтр тонкой очистки, подсоединяем манометр к насосу, включаем зажигание и снимаем показания с прибора. Сопоставлять необходимо с теми же цифрами: 6 атм. – отлично, 5 атм. – замена. Еще один индикатор исправности бензонасоса и чистоты фильтрующего элемента тонкой очистки – заметно подпрыгивающее давление в рампе при заглушенном регуляторе давления топлива.
Диагностика фильтра тонкой очистки
Здравый разум подсказывает, чтобы проверить промежуточный элемент топливной магистрали, необходимо замерить давление до него и после него. По такому принципу проверяется топливопровод на предмет засоренности и повреждений, фильтр тонкой очистки и форсунки.
Фильтрующий элемент расположен сразу за насосной станцией. Если при включенном зажигании на выходе из насоса – 6 атмосфер, а на выходе из фильтра наблюдается значительное падение давления (в пределах 0,5-1 атм.), то деталь подлежит замене.
Теперь о не менее главном: куда подключить манометр на участке «за фильтром». Можно подсоединиться как сразу на выходе из фильтра (актуально для систем с «обраткой»), так и на выходе из тройника, в тот самый разъем, который подключается прямо к насосу (актуально для систем с РДТ, расположенным в насосной станции).
Внимание! Топливный насос и фильтр тонкой очистки проверяются только в режиме «зажигание».
А что же форсунки?
Тревожный звоночек, указывающий на то, что вход в топливную рампу все же придется открывать, обнаруживается еще на стадии диагностики регулятора давления топлива. В момент пережатия «обратки» давление поднимается незначительно. Примечательно еще и то, что форсунки в этот момент начинают активно переливать, отчего двигатель работает неустойчиво. То же самое наблюдается в системе без «обратки», когда глушится выход из РДТ.
Окончательный диагноз ставится на основании замера давления до рампы (отсоединяется входная фишка/гайка и к ней подключается манометр). В этом случае мы исключаем засорение топливопровода на участке бензонасос-топливная рампа. Если давление восстановилось до паспортных 5-6 атмосфер, то дело в форсунках.
В заключение хотелось бы отметить, что давление в рампе 2,5-2,7 атм. и 5-6 атм. на выходе из насоса диагностируются в разных условиях: на заведенном двигателе и в режиме зажигания соответственно.
Как контролировать давление в рампе бензиновой топливной системы с непосредственным впрыском
По мере того, как автомобили становятся чище, производительнее и надежнее, их конструкции развиваются. Одной из важнейших систем, претерпевающих кардинальные изменения, является топливная система; Согласно прогнозам Агентства по охране окружающей среды США, доля топливных систем с непосредственным впрыском топлива в легковых автомобилях растет, и ожидается, что к 2025 году их доля в автомобилях, продаваемых на рынке, превысит 90 %. контроль этих топливных систем имеет первостепенное значение.
Источник: Агентство по охране окружающей среды США: «Проект отчета о технической оценке: промежуточная оценка стандартов выбросов парниковых газов для легковых автомобилей и корпоративных стандартов средней экономии топлива для модельных годов 2022–2025»
900 Топливная система GDI 0 Компоненты
Типичная система непосредственного впрыска бензина состоит из нескольких компонентов: топливных форсунок, топливной рампы, датчика давления в рампе, топливного насоса среднего давления и датчиков положения кулачка и кривошипа. Компоненты выполняют разные функции: насос нагнетает давление топлива примерно с 3-4 бар (40-60 фунтов на кв. дюйм) до 100-300 бар (1500-4500 фунтов на кв. дюйм). Топливные форсунки впрыскивают топливо непосредственно в цилиндры. Топливная рампа подает топливо от насоса к форсункам, а датчик давления в рампе измеряет давление в рампе и отправляет сигнал обратно в блок управления двигателем (ЭБУ), указывающий текущее давление в рампе.
Насос среднего давления обычно приводится в действие кулачком, как показано на этом видео. Кулачок кулачка сжимает топливо, а клапан подачи топлива на насосе открывается и закрывается, что позволяет топливу поступать в рампу. Момент закрытия клапана имеет решающее значение для создания давления в топливной рампе, потому что давление топлива повышается только тогда, когда кулачок поднимает поршень.
Электроника топливной системы GDI
Наличие надлежащего электрического интерфейса для всех этих компонентов является ключевым элементом контроля давления в топливной рампе. Если у вас нет ECU, предназначенного для взаимодействия со всеми из них, или вы ищете решение ECU с открытым исходным кодом, которое позволяет вам более гибко управлять двигателем, вам нужна правильная электроника для управления форсунками и чтения датчики. Для управления форсунками вам потребуется полупроводниковая мостовая схема для отправки команд на форсунки. Иглы форсунок открываются либо соленоидами, либо пьезоэлектрическими блоками, поэтому их необходимо приводить в действие с помощью соответствующего оборудования. Точно так же клапан в топливном насосе приводится в действие соленоидом и должен приводиться в действие аналогичной схемой. Датчик давления обычно посылает аналоговое напряжение и должен считываться аналого-цифровым преобразователем, в то время как датчики положения кулачка и положения кривошипа должны считываться либо цифровыми входными каналами, либо входными каналами с переменным сопротивлением, в зависимости от тип датчика. LHP Technology Solutions, как партнер National Instruments (NI) Alliance, специализируется на продаже, обслуживании и поддержке решений NI для управления топливными форсунками прямого впрыска, топливными насосами прямого впрыска и другой электроникой двигателей внутреннего сгорания (IC).
Алгоритм контроля давления GDI
Для контроля давления топлива недостаточно просто иметь надлежащее электрическое оборудование; ЭБУ требуется алгоритм управления для объединения измерений и исполнительных механизмов для достижения желаемого давления в топливной рампе. Подход, использованный в этой статье, представляет собой ПИД (пропорционально-интегрально-дифференциальный) закон управления с обратной связью для определения ширины импульса импульсов клапана подачи топлива на основе измеренного давления в топливной рампе. Если давление в рампе выше целевого значения, команда ширины импульса на клапан количества топлива уменьшится, чтобы уменьшить количество топлива, попадающего в рампу. Поскольку форсунки работают и впрыскивают топливо в цилиндры для привода двигателя, давление в рампе уменьшится. И наоборот, если давление в рампе ниже целевого значения, команда ширины импульса на клапан количества топлива будет увеличиваться, чтобы увеличить количество топлива, допущенного в рампу, и давление возрастет. Настройка пропорционального, интегрального и дифференциального усиления позволит лучше реагировать на изменения желаемого давления в рампе или скорости двигателя. Типичные значения пульса попадают в диапазон приблизительно 3-10 миллисекунд.
Реализация алгоритма давления
Чтобы найти количество импульсов на команду на клапан, воспользуйтесь одним из трех подходов. Во-первых, попробуйте немного изучить насос и двигатель, чтобы определить, какое количество импульсов задавать. Во-вторых, если возможно, осмотрите кулачок и насос, чтобы определить, сколько импульсов (обычно 1, 2, 3 или 4) нужно отправить на клапан. Найдите кулачки, приводящие в движение насос, и посчитайте их. Наконец, если ни один из этих методов не работает, выберите значение и начните пытаться определить синхронизацию импульсов.
Чтобы определить синхронизацию импульсов клапана подачи топлива, проведите команды по всему рабочему диапазону во время работы двигателя и следите за давлением топлива. Он должен увеличиться, когда вы найдете правильное время. Если вы выбрали значение импульсов и не увидели повышения давления топлива, попробуйте добавить в систему дополнительные импульсы.
Кроме того, в двигателях с изменяемой синхронизацией фаз газораспределения необходимо отрегулировать синхронизацию импульсов клапана подачи топлива, чтобы компенсировать изменения фаз газораспределения, поскольку кулачок кулачка топливного насоса перемещается вместе с кулачками впускного и/или выпускного клапанов. клапаны. Этого можно добиться, просто добавив положение кулачка, регулирующего опережение или запаздывание, к синхронизации импульсов, чтобы гарантировать, что импульсы, управляющие клапаном количества топлива, продолжат добавлять топливо под давлением в рампу.
Теперь, когда у вас есть вся информация, необходимая для контроля давления в рампе в топливной системе GDI, получайте удовольствие!
Нужна дополнительная информация? Загрузите последний технический документ «Управление температурным режимом для электромобилей и гибридных систем электромобилей», чтобы узнать больше.
Статьи по теме
- Топливная эффективность для автономных и электрических транспортных средств
- Почему электромобили переходят на 48-вольтовую электрическую систему
Связанные загрузки
Оптимизация производительности силовой установки с помощью интегрированных решений по управлению трансмиссией
Регулятор давления в системе впрыска Common Rail
Регулятор давления в системе впрыска Common Rail
Ханну Яаскеляйнен, Алессандро Феррари
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите под номером , чтобы просмотреть полную версию этого документа.
Abstract : Существует несколько подходов к контролю давления в общей топливной рампе. Один из первых подходов заключался в том, чтобы подавать в общую топливную рампу больше топлива, чем необходимо, и использовать клапан регулирования давления, чтобы слить лишнее топливо обратно в топливный бак. Более предпочтительным подходом является дозирование топлива в насосе высокого давления, чтобы свести к минимуму количество топлива, нагнетаемого до давления в рампе. Для более поздних целей можно использовать различные виды учета топлива. В некоторых практических реализациях Common Rail используются оба подхода со стратегией управления в зависимости от условий работы двигателя.
- Введение
- Клапан регулировки давления
- Насос-дозатор
- Практический регулятор давления в рампе
Введение
Серийные топливные системы Common Rail оснащены замкнутой системой регулирования высокого давления, которая стабилизирует давление в рампе с относительно небольшим запасом до номинального значения, заданного электронным блоком управления для данного режима работы двигателя. Насос поддерживает давление в рампе, непрерывно подавая топливо в общую рампу. Это давление контролируется датчиком давления, и разница между номинальным значением давления в рампе и измеренным является входным сигналом для контроллера. В терминологии управления давление в рампе равно 9.0008 системный выход , в то время как положение привода, используемого для управления давлением в рампе, является системным входом .
Существует ряд подходов к контролю давления в общей топливной рампе. Одним из способов является подача большего количества топлива, чем необходимо, в общую топливную рампу и использование регулятора высокого давления, обычно называемого клапаном регулирования давления, в контуре высокого давления для сброса избыточного топлива обратно в топливный бак. При таком подходе положение клапана регулирования давления является входом системы управления. Хотя этот подход использовался исключительно в некоторых ранних системах впрыска топлива, таких как насосы Bosch CP1 (рис. 1 и рис. 2), это может привести к низкой эффективности и чрезмерно высокой температуре возврата топлива.
Другой подход заключается в измерении количества топлива в насосе высокого давления, чтобы обеспечить подачу в общую топливную рампу только того количества топлива, которое требуется форсункам. Возможен ряд подходов к измерению помпы. Один из распространенных подходов заключается в измерении количества топлива, всасываемого в насос (впускной дозатор) с помощью впускного дозирующего клапана (IMV), иногда также называемого просто топливным дозирующим клапаном (FMV). Другой подход заключается в том, чтобы позволить насосу всасывать неконтролируемое количество топлива и измерять поток нагнетания насоса (измерение на выходе) с помощью клапана, такого как дозирующий клапан на выходе (OMV). Другим средством является изменение рабочего объема насоса высокого давления. Тщательно контролируя количество топлива, поступающего в насос, и избегая сжатия избыточного топлива до высокого давления, можно повысить гидравлическую эффективность системы впрыска топлива и избежать чрезмерно высоких температур топлива. Следует отметить, однако, что дозирование топлива на ТНВД не может избежать необходимости в регуляторе высокого давления. Регулятор давления все еще можно использовать для некоторой регулировки давления в рампе.
Клапан регулировки давления
Клапан регулирования давления (PCV) для управления давлением в рампе может быть расположен на одном конце рампы (PCV снаружи насоса), рис. 1, или на выходе из насоса (PCV, встроенный в насос), рис. 2. PCV снаружи насоса ведет к меньшие затраты на производство насоса, но близость регулятора к форсункам может вызвать дополнительные помехи в динамике форсунок. В решении PCV со встроенным насосом топливо, дросселируемое регулирующим клапаном, соединяется с потоком утечки из насосных камер, а также с топливом, текущим в контурах охлаждения и смазки насоса. Этот комбинированный поток выпускается из насоса и возвращается в топливный бак.
Рисунок 1 . Система впрыска дизельного топлива Common Rail с клапаном регулировки давления, расположенным на рампе
(Источник: Bosch)
Рисунок 2 . Насос Bosch CP1 со встроенным клапаном регулировки давления
(Источник: Bosch)
Регулирование давления в рампе с помощью PCV по своей природе является быстрым из-за близости входа системы (PCV) и выхода системы (датчика давления в рампе).