Расчет автоматического выключателя для электродвигателя: Выбор автоматических выключателей для электродвигателей

Содержание

Выбор автоматических выключателей для электродвигателей

Выбирая автоматические выключатели для защиты двигателей, мы должны учитывать, что при пуске электродвигателя, возникает пусковой ток, превышающий в 5 — 7 раз номинального значения.

Автоматические выключатели выбираются по условиям:

Uном. ≥ Uном.сети

где:

  • Uном. – номинальное напряжение, В;
  • Uном.сети – номинальное напряжение сети, В.

Iном.расц. ≥ Iном.дв.

где:

  • Iном.расц. – номинальный ток расцепителя выключателя, А;
  • Iном.дв. – номинальный ток электродвигателя, А.

Ток уставки электромагнитного и полупроводникового расцепителя выбирается по формуле [Л1,с. 106]:

Для приближенного расчета тока уставки электромагнитного и полупроводникового расцепителя, можно принять по таблице 6.1 [Л1,с. 107].

Таблица 6.1 – Значения коэффициентов для расчета тока срабатывания отсечки автоматических выключателей, устанавливаемых в цепях электродвигателей

Автоматический выключателиь Расцепитель
А3700; А3790 Полупроводниковый РП 1,1 1,0 1,3 1,5
ВА БПР
«Электрон» РМТ 1,35 1,6
МТЗ-1 1,4 2,2
АВМ Электромагнитный 1,4 1,1 1,8
А3110; АП-50; А3700; ВА; АЕ20 1,3 2,1
А3120; А3130; А3140 1,15 1,9

Надежность срабатывания автомата при двухфазном и однофазном коротком замыкании при КЗ на выводах электродвигателя определяется коэффициентом чувствительности и рассчитывается по формуле [Л1,с. 107]:

При отсутствии значений по коэффициенту разбросу kp, рекомендуется принимать коэффициент чувствительности в пределах 1,4-1,5.

В случае если чувствительности защиты от междуфазных КЗ недостаточно, следует принять следующие меры:

  • уточнить значение Iс.о с учетом влияния сопротивления внешней сети на пусковой ток электродвигателя;
  • выбрать другой тип АВ;
  • увеличить сечение кабеля на одну, две ступени, но не больше;
  • применить выносную релейную защиту.

При недостаточной чувствительности защиты от однофазных КЗ, следует принять следующие меры:

  • применить кабель другой конструкции с нулевой жилой, алюминиевой оболочкой;
  • проложить дополнительные зануляющие металлические связи;
  • применить АВ со встроенной защитой от однофазных КЗ;
  • применить выносную релейную защиту от однофазных КЗ, ток срабатывания данной защиты принимается 0,5-1*Iном.дв. Коэффициент чувствительности kч > 1,5, согласно ПУЭ 7-издание;

Выбор тока срабатывания для теплового и электромагнитного (комбинированного) расцепителя автоматического выключателя

Для того, чтобы защитить двигатель от перегрузки, то есть от повреждений, вызываемых длительным протеканием тока превышающего номинальный, нужно использовать тепловые и электромагнитные (комбинированные) расцепители. Номинальный ток теплового расцепителя определяется по формуле [Л1. с 109]:

Данные коэффициенты определяются для разных типов выключателя по таблице 6.2 [Л1. с 112].

Таблица 6.2 – Значения коэффициентов для расчета тока срабатывания защиты от перегрузки автоматических выключателей

Автоматический выключателиь Расцепитель kн = kз*kр
А3700; АЕ20 Тепловой 1,15 1
А3110; АП50 1,25 1
ВА51; ВА52 1,2-1,35 1
АВМ Электромагнитный 1,1 1,1 1,2 0,5-0,7
А3700 Полупроводни-
ковый
РП 1,1 1,15-1,2 1,27-1,32 0,97-0,98
«Электрон» МТЗ-1, РМТ 1,1 1,15-1,35 1,27-1,49 0,75
ВА БПР 1,1 1,08-1,2 1,19-1,32 0,97-0,98

Общая формула по определению тока теплового расцепителя, имеет следующий вид:

Время срабатывания защиты от перегрузки выбирается из условия, что защита не будет срабатывать при пуске и самозапуске двигателя [Л1. с 112]:

Продолжительность пуска для двигателей с тяжёлыми условиями пуска, составляет более 5 – 10 сек, например для двигателей центрифуг, дробилок, шаровых мельниц и т.д и для двигателей с лёгкими условиями пуска равным 0,5 – 2 с, например для двигателей вентиляторов, насосов, главных приводов металлорежущих станков и механизмов с аналогичным режимом работы.

Проверка чувствительности при однофазных КЗ

Данную проверку нужно выполнять, если для отключения однофазных КЗ используется защита от перегрузки. В настоящее время ПУЭ 7-издание п. 1.7.79 предъявляет требования, чтобы время отключение выключателя тока однофазного КЗ не превышало 0,4 с.

Литература:

1. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

Выбор автомата защиты и контактора по мощности двигателя

Используя информацию из таблицы ниже можно по мощности трехфазного двигателя (или его номинальному току) выбрать автомат защиты двигателя и подходящий контактор. Под таблицей даны ответы на вопросы. В таблице показано наличие изделий: зеленый — в наличии, голубой — ожидается, серый — под заказ.

 















































       
Мощность двигателя 3~400В, кВт

 
Диапазон уставки, А
Imin – Iном
Ток мгновенного расцепителя, А
(авт. выключателя)
Ном. откл.

способн., кА
(авт. выключателя)
Автомат защиты двигателя Модуль соединения        Контактор        Адаптер

на DIN-рейку
0,10 – 0,16 2,1 100 M4-32T-0,16 M4 32 VK1 K1-09D10 230
0,06 0,16 – 0,25 3,3 100 M4-32T-0,25 M4 32 VK1 K1-09D10 230
0,09 0,25 – 0,4 5,2 100 M4-32T-0,4   M4 32 VK1 K1-09D10 230
0,18 0,4 – 0,63 8,2 100 M4-32T-0,63 M4 32 VK1 K1-09D10 230
0,25 0,63 – 1 13 100 M4-32T-1      M4 32 VK1 K1-09D10 230
0,55 1,0 – 1,6 20,8 100 M4-32T-1,6   M4 32 VK1 K1-09D10 230
0,75 1,6 – 2,5 32,5 100 M4-32T-2,5   M4 32 VK1 K1-09D10 230
1,5 2,5 – 4 52 100 M4-32T-4      M4 32 VK1 K1-09D10 230
2,2 4 – 6 78 100 M4-32T-6      M4 32 VK1 K1-09D10 230
3 5 – 8 104 100 M4-32T-8      M4 32 VK1 K1-09D10 230
4 6 – 10 130 50 M4-32T-10    M4 32 VK1 K1-09D10 230
5,5 9 – 13 169 50 M4-32T-13    M4 32 VK1 K1-12D10 230
7,5 11 – 17 221 20 M4-32T-17    M4 32 VK3 K3-18ND10 230
7,5 14 – 22 286 15 M4-32T-22    M4 32 VK3 K3-22ND10 230
11 18 – 26 338 15 M4-32T-26    M4 32 VK3 K3-22ND10 230
15 22 – 32 416 15 M4-32T-32    M4 32 VD K3-32A00 230 M4 32 HU1
 

 
             
0,10 – 0,16 2,1 100 M4-32R-0,16 M4 32 VK3 K3-10ND10 230
0,06 0,16 – 0,25 3,3 100 M4-32R-0,25 M4 32 VK3 K3-10ND10 230
0,09 0,25 – 0,4 5,2 100 M4-32R-0,4   M4 32 VK3 K3-10ND10 230
0,18 0,4 – 0,63 8,2 100 M4-32R-0,63 M4 32 VK3 K3-10ND10 230
0,25 0,63 – 1 13 100 M4-32R-1      M4 32 VK3 K3-10ND10 230
0,55 1,0 – 1,6 20,8 100 M4-32R-1,6   M4 32 VK3 K3-10ND10 230
0,75 1,6 – 2,5 32,5 100 M4-32R-2,5   M4 32 VK3 K3-10ND10 230
1,5 2,5 – 4 52 100 M4-32R-4      M4 32 VK3 K3-10ND10 230
2,2 4 – 6 78 100 M4-32R-6      M4 32 VK3 K3-10ND10 230
3 5 – 8 104 100 M4-32R-8      M4 32 VK3 K3-10ND10 230
4 6 – 10 130 100 M4-32R-10    M4 32 VK3 K3-10ND10 230
5,5 9 – 13 169 100 M4-32R-13    M4 32 VK3 K3-14ND10 230
7,5 11 – 17 221 50 M4-32R-17    M4 32 VK3 K3-18ND10 230
7,5 14 – 22 286 50 M4-32R-22    M4 32 VK3 K3-22ND10 230
11 18 – 26 338 50 M4-32R-26    M4 32 VK3 K3-22ND10 230
15 22 – 32 416 50 M4-32R-32    M4 32 VD K3-32A00 230 M4 32 HU1
 

 
             
12,5 18 – 26 338 50 M4-63R-26    M4 63 VD K3-32A00 230 M4 63 HU1
15 22 – 32 416 50 M4-63R-32    M4 63 VD K3-32A00 230 M4 63 HU1
18,5 28 – 40 520 50 M4-63R-40    M4 63 VD K3-40A00 230 M4 63 HU1
22 34 – 50 650 50 M4-63R-50    M4 63 VD K3-50A00 230 M4 63 HU1
30 45 – 63 819 50 M4-63R-63    M4 63 VD K3-62A00 230 M4 63 HU1
 

 
             
30 45 – 63 819 50 M4-100R-63   M4 100 VD K3-62A00 230 M4 100 HU1
37 55 – 75 975 50 M4-100R-75   M4 100 VD K3-74A00 230 M4 100 HU1
45 70 – 90 1170 50 M4-100R-90   K3-90A00 230
80 – 100 1300 50 M4-100R-100 K3-115A00 230

 

Как осуществлять подбор автоматического выключателя для защиты электродвигателя:

1. Номинальный ток автоматического выключателя должен быть больше или равен номинальному току электродвигателя.

2. Пусковой ток электродвигателя обычно в 7 раз превышает номинальный (точная величина для конкретного двигателя указывается в паспорте). Т.к. автоматический выключатель не должен срабатывать при пуске двигателя, необходимо удостовериться, что величина в колонке «Ток мгновенного расцепления при к.з.» с некоторым запасом будет выше пускового тока.

Пусковой ток для этих вылей вычисляем по формуле Iном*KРАТН*КОЭФ, где Iном — номинальный ток электродвигателя, КРАТН — кратность пускового тока электродвигателя, КОЭФ — поправочный коэффициент, учитывающий отклонение пускового тока от номинального, колебания напряжения (принимаем равным 1,4).

3. Номинальный ток автоматического включателя должен быть меньше предельно допустимого тока кабеля, которым осуществляется подключение электродвигателя.

Пример: возьмем двигатель АИР90L4 мощностью 2. 2кВт, в паспорте указаны: номинальный ток Iн (треугольник/звезда) (220/380В) = 8,91А / 5,16А; кратность пускового тока Iп/Iн=6,8.

По номинальному току электродвигателя (5,16А) выбираем автомат защиты двигателя M4-32T-6 c номинальным током .

Проверяем: пусковой ток 5,16*6,8*1,4=49,12А не превышает «Ток мгновенного расцепления при к.з.» равный 78А.

Т.О. автомат не будет срабатывать при пуске двигателя.

Следовательно данный автоматический выключатель подходит для защиты указанного электродвигателя.

 

 

 

Вопросы и ответы:

В: В каких случаях срабатывает автомат защиты двигателя?

О: Автоматические выключатели M4 снабжены: 1. биметаллическим тепловым размыкателем, который срабатывает в зависимости от уставки по номинальному току двигателя (уставка задается регулятором на лицевой панели), данный размыкатель инерционен и срабатывает тем быстрее, чем выше ток. 2. мгновенным электромагнитным размыкателем, срабатывающим в случае к. з., порог срабатывания в 13 раз выше номинала автоматического выключателя и поэтому позволяет исключить ложные срабатывания при запуске электродвигателя.

В: Чем отличаются автоматы защиты M4-32T.. от M4-32R..?

О: Автоматы защиты M4-32T имеют кнопочный механизм включения, в то время как M4-32R оборудованы поворотным переключателем.

В: Для каких условий эксплуатации предназначены автоматы защиты двигателя M4?

Автоматические выключатели M4 подходят для любого климата. Для исключения ложных срабатываний рекомендуется избегать обдува автоматов свежим или холодным воздухом (от системы кондиционирования). Автоматы защиты M4 предназначены для функционирования в закрытых помещениях при нормальных условиях (т.е. без пыли, приводящих к коррозии паров или вредных газов). В случае использования в помещениях с отличными от нормальных условиями эксплуатации, необходимо использовать защитный корпус IP65, например, M4 32R PFh5 (серый) или M4 32R PFHN4 (желто-красный).

В: Где найти информацию по аксессуарам для автоматов-защиты двигателей M4?

О: См. раздел АКСЕССУАРЫ ДЛЯ МОТОР-АВТОМАТОВ BENEDICT? (блоки доп. контактов, контакты сигнализации срабатывания, расцепитель минимального напряжения, независимый расцепитель, перемычки и т.д.)

В: На какое конкретно значение должна выставляться уставка автомата защиты двигателя?

О: Уставка автоматического выключателя должна выставляться на значение номинального рабочего тока электродвигателя, указанное на шильдике (в паспорте).

В: Возможно ли использование автоматов защиты двигателя M4 для однофазных электродвигателей?

О: Да, возможно. В этом случае подключение должно осуществляться, как показано на рисунке:

В: Какую защиту обеспечивают автоматические выключатели M4?

1. Защита при возникновении токов короткого замыкания. Мгновенный расцепитель при возникновении короткого замыкания в нагрузке, обеспечивает отключение нагрузки от сети питания, таким образом предотвращая возникновение дополнительного ущерба от действия больших токов. Автоматические выключатели M4 имеют отключающую способность 50кА и 100кА, что при напряжениях 380-400В AC является исчерпывающе надежной защитой, т.к. более высокие токи обычно не могут возникать в точке установки данного оборудования. В общем случае использование предохранителей не требуется, однако установка предохранителей дополнительно может производиться в тех случаях, когда ток короткого замкания в точке монтажа оборудования может превышать номинальную отключающую способность автоматического выключателя.

2. Защита двигателя. Характеристики срабатывания автоматических выключателей M4 специально разработаны для защиты трехфазных электродвигателей. Поэтому автоматические выключатели для защиты электродвигателей так же могут называться ручными пускателями двигателя. Номинальный ток защищаемого двигателя выбирается регулятором на лицевой панели устройства.

3. Защита сети. Автоматы защиты двигателя M4 так же обеспечивают защиту сети. Они соответствуют требованиям ГОСТ IEC 60947-3-2016 (Выключатели, разъединители, выключатели-разъединители и комбинации их с предохранителями) и ГОСТ IEC 60947-2-2014 (Аппаратура распределения и управления низковольтная). В соответствии с ГОСТ Р МЭК 60204-1-2007 данные автоматические выключатели могут быть использованы как основной или аварийной выключатель (следует учитывать, что в случае использования аксессуара для дверного сочленения не выполняются требования к изоляции).

Характеристики срабатывания автоматических выключателей M4 для защиты электродвигателя:


I — Кривая показывает средний рабочий ток при температуре 20°С, если устройство было полностью охлаждено перед началом работы.

II — Кривая показывает характеристику мгновенного электромагнитного расцепителя (расцепление при к.з.)

Информация по аксессуарам для автоматов защиты двигателя M4

 

Какой выбрать автомат для асинхронного двигателя — Расчёты — Справочник

    Расчет и выбор автоматического выключателя.
 

 

 Автоматический выключатель (АВ) выбирают по номинальному току Iн.вык выключателя и номинальному току Iн. расц расцепителя.
Iрасц=Iдлт, где
Iдл=Iн.дв – длительный ток в линии,
Iн.дв – номинальный ток двигателя,
Кт – тепловой коэффициент, учитывающий условия установки АВ.
Кт=1  — для установки в открытом исполнении;
Кт=0,85 – для установки в закрытых шкафах.

                             Iдл=Iн= Рн/(Uн·√3·ηн·cosφ),                                                                               (1)

гдеРн — мощность двигателя, кВт;
Uн – номинальное напряжение электродвигателя, кВ;
ηн – КПД двигателя (без процентов),
cosφ – коэффициент мощности двигателя.
Номинальный ток асинхронного двигателя с к. з. ротором будет примерно равен его удвоенной мощности, взятой в киловаттах:
Iн≈ 2Рн(кВт)
Выбираем АВ:
Тип –
Iн.вык
Iрасц

 

Проверка правильности выбора АВ по току мгновенного срабатывания.

 

 

Необходимо, чтобы выполнялось условие:
Iмгн.ср  ≥ KIкр, где
Iмгн.ср  — ток мгновенного срабатывания,
Iкр – максимальный  кратковременный ток,
К – коэффициент, учитывающий неточность определения Iкр в линии.
К = 1,25 – для АВ с Iн > 100А;
К = 1,4 – для АВ с Iн ≤ 100А.
Iкр = Iпуск = Кi Iн, где
Кi – кратность пускового момента Кi = Iпуск/Iн.
Значения Кi берутся из таблиц.
Если условие выполняется, значит АВ выбран верно, если не выполняется, то выбирается АВ с большим значением тока расцепителя.

 

 

Приведем пример .

Дано:

Тип двигателя:

4А112М4У3

Условие установки АВ:

В шкафу.

Найти:

Тип АВ;

Iмгн.ср;

Iрасц.

Решение.

По типу двигателя выписываем из таблицы его номинальные данные:

Рн = 5,5 кВт; η = 85,5%=0,855; cosφ = 0,85; Iп/Iн = Кi = 7.

 

Iдл = Iнн/√3Uнηcosφ  = 5,5/√3∙0,38∙0,855∙0,85  = 11,5 A

 

Так как автомат устанавливается в шкафу, то Кт = 0,85, поэтому:

Iрасц = Iнт = 11,5/0,85 = 13,5 А.

По току расцепителя выбираем автомат: ВА 51-25; Iн =25 А  Iрасц = 16 А;

Проверка

Iмгн.ср≥ КIкр

Iмгн.ср = 10∙Iрасц = 10∙16 = 160 А

 

Iкр = Iпуск = КiIн = 7∙11,5 = 80,5 А

К = 1,4

160 ≥ 1,4∙80,5 = 112,7 А

Неравенство выполняется, значит автомат выбран верно.

 

Как подобрать автоматический выключатель для двигателя

Правильный подбор автоматического выключателя для защити электродвигателя имеет огромное значение для оборудования. Надежность работы, защита двигателя от аварийных режимов работы и проводки  напрямую зависит от подбора автоматического выключателя.

В этой статье наведем условия выбора автоматического выключателя для защиты электродвигателя. Для того чтобы выбрать автоматический выключатель необходимо знать:

— номинальный ток двигателя;

— кратность пускового тока к номинальному;

— максимально допустимый ток электропроводки.

Номинальный ток двигателя – это ток который имеет электродвигатель во время работы при номинальной мощности. Он указывается  на паспорте электродвигателе или берется с таблиц паспортных данных электродвигателей.

Кратность пускового тока к номинальному – это соотношение пускового ток который возникает в электродвигателе во время пуска к номинальному. Он тоже указывается на паспорте электродвигателя или в таблицах электродвигателей.

Максимально допустимый ток электропроводки – это допустимый ток, который может проходить по проводу, кабеля, что подключен к электродвигателю.

Условия для правильного выбора автоматического выключателя для защиты электродвигателя:

— номинальный ток автоматического выключателя должен бить больше или равен номинальному току электродвигателя.  Например: ток электродвигателя АИР112М4У2 Ін. дв. =11,4А выбираем автоматический выключатель ВА51Г2534 на номинальный ток Ін. = 25А и ток расцепителя Ін..рас. = 12.5А.

После этого проверим автоматический выключатель на не срабатывания при пуске электродвигателя используя  условие :

Iу.е.>kзап. · kр.у ·kр.п. ·Iн.дв ·kі

где Kзап . — коэффициент запаса, который учитывает колебания напряжения, Kзап . = 1,1 ;

kр.у — коэффициент, который  учитывает неточность вставки по току срабатывания электромагнитного расцепителя автоматического выключателя , Kр. у = 1,2 ;

kр.п. — коэффициент, который учитывает возможное отклонение пускового тока от его номинального, kр.п. = 1,2 ;

K і — каталожная кратность пускового тока электродвигателя;

Iн.дв — номинальный ток двигателя , А.

Iу.е = 14 · Iн.рос = 14 · 12,5 = 175А

З таблицы электродвигателей находим K і  = 7,0 для электродвигателя АИР112М4У2.

Подставляем в условие и определяем

175А > 1,1·1,2·1,2·7,0·11,4

175А > 126,4А

Условие выполнилось, следовательно,  автоматический выключатель не сработает при запуске двигателя.

— номинальный ток автоматического выключателя должен быть меньше предельно допустимого тока кабеля которым питается электродвигатель. Например: подключение сделано кабелем АВРГ (3х2,5) который имеет допустимый   ток Iдоп =27А. Для водного автомата для защиты электродвигателя условие выполняется потому, что Iдоп =27А > Ін. = 25А .

В этой статье вы узнали как правильно, используя условия выбора правильно подобрать автоматический выключатель для защиты электродвигателя.

Очень интересные публикации по этой теме:

Автомат защиты электродвигателя — как правильно подобрать?

При подборе автоматических выключателей, способных защитить электрические моторы от повреждения в результате КЗ или чрезмерно высоких нагрузок, необходимо учитывать большую величину пускового тока, нередко превышающую номинал в 5-7 раз. Наиболее мощным стартовым перегрузкам подвержены асинхронные силовые агрегаты, обладающие короткозамкнутым ротором. Поскольку это оборудование широко применяется для работы в производственных и бытовых условиях, то вопрос защиты как самого устройства, так и питающего кабеля очень актуален. В этой статье речь пойдет о том, как правильно рассчитать и выбрать автомат защиты электродвигателя.

Задачи устройств для защиты электродвигателей

Бытовую электротехнику от пусковых токов большой величины в сетях обычно защищают с помощью трехфазных автоматических выключателей, срабатывающих через некоторое время после того, как величина тока превысит номинальную. Таким образом, вал мотора успевает раскрутиться до нужной скорости вращения, после чего сила потока электронов снижается. Но защитные устройства, используемые в быту, не имеют точной настройки. Поэтому выбор автоматического выключателя, позволяющего защитить асинхронный двигатель от перегрузок и сверхтоков короткого замыкания, более сложен.

Современные автоматы для защиты двигателя нередко устанавливаются в общем корпусе с пускателями (так называются коммутационные устройства запуска мотора). Они предназначены для выполнения следующих задач:

  • Защита устройства от сверхтока, возникшего внутри мотора или в цепи подачи электропитания.
  • Предохранение силового агрегата от обрыва фазного проводника, а также дисбаланса фаз.
  • Обеспечение временной выдержки, которая необходима для того, чтобы мотор, вынужденно остановившийся в результате перегрева, успел охладиться.

Управляющая и защитная автоматика для двигателя на видео:

Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз. Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже. А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.

Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.

Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.

Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн. Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25. Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.

Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (Inт).

Современные устройства электрозащиты силовых агрегатов

Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.

Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.

Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления. Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат. Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.

Особенности защиты электрических двигателей в производственных условиях

Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.

Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:

Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.

Заключение

В этом материале мы подробно осветили тему защитных устройств для электрических двигателей, и разобрались с тем, как подобрать автомат для электромотора и какие параметры при этом должны быть учтены. Наши читатели могли убедиться, что расчеты, которые производятся при этом, совсем несложны, а значит, подобрать аппарат для сети, в которую включен не слишком мощный силовой агрегат, вполне можно самостоятельно.

Калькулятор расчёта тока нагрузки для выбора автоматического выключателя

С помощью данного калькулятора Вы можете рассчитать номинальный ток автоматического выключателя по мощности подключаемых через него электроприборов.

Введите значения в форму ниже: суммарную мощность электрооборудования, тип потребителя и параметры сети (фазность и напряжение).

*Примерные значения коэффициента мощности представлены в таблице:

Бытовые электроприборы Мощность, Вт cos φ
Электроплита 1200 — 6000 1
Обогреватель 500 — 2000 1
Пылесос 500-2000 0,9
Утюг 1000 — 2000 1
Фен 600 — 2000 1
Телевизор 100 — 400 1
Холодильник 150 — 600 0,95
СВЧ-печь 700 — 2000 1
Электрочайник 1500 — 2000 1
Лампы накаливания 60 — 250 1
Люминесцентные лампы 20 — 400 0,95
Бойлер 1500 — 2000 1
Компьютер 350 — 700 0,95
Кофеварка 650 — 1500 1
Стиральная машина 1500 — 2500 0,9
Электроинструмент Мощность, Вт cos φ
Электродрель 400 — 1000 0,85
Болгарка 600 — 3000 0,8
Перфоратор 500 — 1200 0,85
Компрессор 700 — 2500 0,7
Электромоторы 250 — 3000 0,7 — 0,8
Вакуумный насос 1000 — 2500 0,85
Электросварка (дуговая) 1800 — 2500 0,3 — 0,6

Выбор ВА47-29 и настройка РТИ в схеме управления асинхронным электродвигателем (2009)


Как подобрать и настроить защитную аппаратуру асинхронного двигателя?


В цепи обмоток электромотора, помимо короткого замыкания, возможен режим перегрузки, возникающий из-за:

  • обрыва фазы;

  • повышения/снижения напряжения;

  • возрастания момента на валу свыше 1,1 Мном.


Ток двигателя при перегрузке увеличивается на 20…50%, нагрев обмоток — пропорционально квадрату тока, соответственно на 40…125%. Если перегрузка кратковременна 2-3 минуты, ею можно пренебречь. Но если более продолжительна, то возрастает вероятность пробоя изоляции обмоток двигателя. Слежением за величиной перегрузки и отключением двигателя занимается тепловое реле. Время его отключения должно быть тем меньше, чем больше ток перегрузки, и пропорционально квадрату отношения величины рабочего тока к току перегрузки.


Рассмотрим типовую схему включения асинхронного электродвигателя. В нее входят: трехполюсный автоматический выключатель, контактор серии КМИ, кнопочная станция, тепловое реле серии РТИ, электродвигатель (см. Рис. 1).


Рисунок 1. Типовая схема включения асинхронного электродвигателя



При выборе автоматического выключателя необходимо учитывать пропускание пускового тока двигателя:


Для двигателя 4А100S2У3 (Рном = 4,0 кВт, пном=2880 об/ мин, КПД=86,5%, CoS9=0,89, Iпуск/Iном=7,5 номинальный ток Іном=Рном/ 380.Cos9 КПД=4000/1, 73.380.0, 89Ю,865=7,9А, пусковой ток Іпуск=7,5.Іном=59,3А) при условии, что пусковой ток 59,3А меньше нижней границы диапазона тока срабатывания ЭМ расцепителя, выбираем ВА47-29 с характеристиками В20, С13 или D8.


Сопоставим выбранные выключатели. По загрузке В20/С13/ D8 соотносятся, как 0,4/0,62/1; В20 загружен на 40%, С13 — на 62%, D8 — на 99%. По тепловыделению в20/С13/ D8 соотносятся как 0,16/0,38/0,98. Мощность тепловых потерь на В20 составляет 1,7 Вт, на С13 — 4 Вт, на D8 — 10,3 Вт. Что выбрать? Вариант с меньшим тепловыделением и загрузкой!


Приведем еще пример расчета и выбора вводного автоматического выключателя ВА47-29 для электродвигателей серии АОП2 (с повышенным пусковым моментом).


При определении пускового тока принимаем его кратность для двигателей 1500 об/мин равной 7,5; для 1000 об/мин — 7, и для 750 об/мин — 6. Расчетный номинальный ток вводного автомата определяем делением пускового тока на кратность нижней границы диапазона настройки расцепителя. Для характеристик: В-3, для С — 5, для D — 10. Второе условие выбора вводного автомата: номинальный ток автомата должен быть больше номинального тока двигателя.


В результате, например, для двигателя АОП2-42-4 мощностью 5,5 кВт и частотой вращения 1440 об/мин (номинальный ток 11,7 А, пусковой ток 88 А), наиболее подходящим с точки зрения надежности будет вариант автоматического выключателя с характеристикой В 32, а не D13 или С18!


Настройка уставки теплового реле


Проведение пуско-наладочных работ предусматривает настройку тепловой защиты. Наиболее верно проводить настройку уставки теплового реле «на горячем двигателе», при установившемся температурном режиме работающего двигателя и теплового реле.


Настройка теплового реле проводится поэтапно. Перед пуском двигателя уставку ставят на максимальное значение. При установившемся температурном режиме, спустя 25…40 минут непрерывной работы при номинальном рабочем режиме, уставку плавно уменьшают до срабатывания теплового реле и отключения электродвигателя.


Слегка «загрубив» уставку, повторно запускают двигатель и проверяют правильность настройки. Если реле опять отключит двигатель, то уставку увеличивают, если не отключит — то, уменьшая уставку, снова проверяют срабатывание теплового реле во второй, и в третий раз.


Оптимальным считается вариант настройки при совпадении теплового режима окружающей среды щитового оборудования и двигателя. Например, при размещении в одном помещении.


Положительным фактором является встроенная термокомпенсация теплового реле. Но если ее нет, необходимо, в зависимости от температуры окружающей среды (лето/зима — день/ночь), проводить корректировку уставки.


Тепловые реле серии РТИ торговой марки IEK имеют термокомпенсацию. Это рычаг между эксцентриком уставки и механизмом переключения контактов, который изготовлен из биметалла.


Более сложный вариант настройки тепловой защиты двигателя — при размещении пускозащитной аппаратуры в щитовом помещении, а двигателя — на открытом воздухе. Именно в летний период при максимальной дневной температуре повышается вероятность перегрузки двигателя. В таких случаях применяют встроенную температурную защиту двигателя. В статорной обмотке двигателя (при его изготовлении) размещают позисторы (резисторы с нелинейной зависимостью сопротивления от температуры), автоматически контролирующие температурный режим обмоток и отключающих питание двигателя при достижении максимально-допустимой температуры обмотки.


Гарантией наиболее верного способа защиты от перегрузки будет правильный выбор мощности приводного двигателя. И если нормы проектирования СССР рекомендовали выбирать двигатель с загрузкой 0,75.0,9 (то есть запас составлял 10-25%), то при выборе мощности двигателя с загрузкой на половину номинала проблем с тепловой защитой будет гораздо меньше.


Итак, подведем итоги:

  • Защита силовой цепи асинхронных электродвигателей автоматическими выключателями серии ВА47-29 с заменой характеристики электромагнитного расцепителя D на В или С, снижает тепловыделение, и, соответственно, температуру в щите управления;

  • Анализ характеристик автоматических выключателей для питания электродвигателей серии АОП2 показывает, что возможна замена автоматического выключателя ВА47-29 с характеристикой D для электродвигателей мощностью до 13 кВт на В, и до 22 кВт на автоматический выключатель ВА47-29 с характеристикой С;

  • Настройку тепловой защиты двигателей необходимо проводить «на горячем двигателе» в установившемся температурном режиме двигателя и теплового реле, подбирая уставку последнего согласно вышеприведенной методике.

Расчеты двигателей

Часть 1: Двигатели и проводники ответвленных цепей

Благодарим вас за посещение одной из наших самых популярных классических статей. Если вы хотите получить обновленную информацию по этой теме, ознакомьтесь с недавно опубликованной статьей

Motor Calculations — Part 1 .

Лучшим методом обеспечения максимальной токовой защиты для большинства цепей является использование автоматического выключателя, сочетающего защиту от перегрузки по току с защитой от короткого замыкания и замыкания на землю.Однако обычно это не лучший выбор для двигателей. За редкими исключениями, наилучшим методом обеспечения максимальной токовой защиты в этих случаях является отделение устройств защиты от перегрузки от устройств защиты от короткого замыкания и замыкания на землю ( Рис. 1 ).

Устройства защиты двигателя от перегрузки, такие как нагреватели, защищают двигатель, оборудование управления двигателем и проводники параллельной цепи от перегрузки двигателя и, как следствие, чрезмерного нагрева (430.31). Они не обеспечивают защиты от коротких замыканий или токов замыкания на землю.Это работа выключателей ответвлений и фидеров, которые не обеспечивают защиту двигателя от перегрузки. Такая компоновка отличает расчеты двигателя от расчетов, используемых для других типов нагрузок. Давайте посмотрим, как применять ст. 430, начиная с мотора.

Защита от перегрузки. Устройства защиты двигателя от перегрузки часто встроены в пускатель двигателя. Но вы можете использовать отдельное устройство защиты от перегрузки, такое как двухэлементный предохранитель, который обычно находится рядом с пускателем двигателя, а не с выключателем питания.

Рис. 1. Защита от перегрузки по току обычно достигается путем отделения защиты от перегрузки от устройства защиты от короткого замыкания и замыкания на землю.

Если вы используете предохранители, вы должны предоставить по одному на каждый незаземленный провод (430,36 и 430,55). Таким образом, для трехфазного двигателя требуется три предохранителя. Имейте в виду, что эти устройства находятся на стороне нагрузки в ответвленной цепи и не обеспечивают защиты от короткого замыкания или замыкания на землю.

Двигатели мощностью более 1 л.с. без встроенной тепловой защиты и двигатели мощностью 1 л.с. или менее, которые запускаются автоматически [430.32 (C)] должен иметь устройство защиты от перегрузки, размер которого соответствует номинальному току двигателя, указанному на паспортной табличке [430,6 (A)]. Размер устройств защиты от перегрузки не должен превышать требований 430.32. Двигатели с номинальным коэффициентом эксплуатации (SF), указанным на паспортной табличке, равным 1,15 или более, должны иметь устройство защиты от перегрузки, рассчитанное не более чем на 125% номинального тока двигателя, указанного на паспортной табличке.

Рис. 2. При работе с двигателями с коэффициентом эксплуатации 1,15 или выше размер устройства защиты от перегрузки не должен превышать 125% от номинала двигателя, указанного на паспортной табличке.

Давайте посмотрим на Рис. 2 и проработаем пример расчета.

Пример № 1 : Предположим, вы используете двухэлементный предохранитель для защиты от перегрузки. Предохранитель какого размера вам нужен для однофазного двигателя мощностью 5 л.с., 230 В с эксплуатационным коэффициентом 1,16, если номинальный ток двигателя, указанный на паспортной табличке, составляет 28 А?

(а) 25А
(в) 35А
(б) 30А
(г) 40А

Размер защиты от перегрузки должен соответствовать номинальному току двигателя, указанному на паспортной табличке [430,6 (A), 430.32 (А) (1) и 430,55].

Также необходимо учитывать еще один фактор: превышение температуры на паспортной табличке. Для двигателей с номиналом превышения температуры, указанным на паспортной табличке, не более 40 ° C, размер устройства защиты от перегрузки не должен превышать 125% номинального тока двигателя, указанного на паспортной табличке. Таким образом, 28A × 1,25 = 35A [240,6 (A)]

Рис. 3. Определите размер устройства защиты двигателя от перегрузки с номинальным значением превышения температуры 40 ° C или менее, указанным на паспортной табличке, при не более 125% номинального тока двигателя, указанного на паспортной табличке.

Давайте посмотрим на рис.3 и проработайте другой пример задачи.

Пример № 2 : Опять же, предположим, что вы используете двухэлементный предохранитель для защиты от перегрузки. Предохранитель какого размера вам нужен для 3-фазного двигателя мощностью 50 л.с., 460 В с повышением температуры до 39 ° C и номинальным током, указанным на паспортной табличке двигателя, 60 А (FLA)?

(а) 40A
(в) 60A
(б) 50A
(г) 70A

Размер защиты от перегрузки соответствует номинальному току двигателя, указанному на паспортной табличке, а не номинальному току полной нагрузки двигателя (FLC).Таким образом, 60А × 1,25 = 75А. Защита от перегрузки не должна превышать 75A, поэтому вам необходимо использовать двухэлементный предохранитель на 70A [240,6 (A) и 430,32 (A) (1)].

Двигатели, которые не имеют номинального эксплуатационного фактора 1,15 или выше или рейтинга превышения температуры 40 ° C и менее, должны иметь устройство защиты от перегрузки, рассчитанное не более чем на 115% номинального тока двигателя, указанного на паспортной табличке (430,37).

Рис. 4. См. Таблицу 310.16 при выборе проводника подходящего размера для обслуживания одиночного двигателя.

Расчет проводов ответвительной цепи. Проводники ответвленной цепи, обслуживающие один двигатель, должны иметь допустимую нагрузку не менее 125% от FLC двигателя, как указано в таблицах с 430.147 по 430.150 [430,6 (A)]. Вы должны выбрать размер проводника из Таблицы 310.16 в соответствии с номинальной температурой клемм (60 ° C или 75 ° C) оборудования [110,14 (C)]. Давайте укрепим эту концепцию, проработав пример расчета. См. Рис. 4 .

Пример № 3 : Провод THHN какого сечения вам нужен для однофазного двигателя мощностью 2 л.с., 230 В?

(a) 14 AWG
(c) 10 AWG
(b) 12 AWG
(d) 8 AWG

Давайте рассмотрим решение:

Шаг 1: Размер проводника не менее 125% двигателя FLC

Шаг 2: Таблица 430.148 показан FLC мощностью 2 л.с., 230 В, однофазный, как 12A

.

Шаг 3: 12A × 1,25 = 15A

Шаг 4: Согласно таблице 310.16, вам необходимо использовать 14 AWG THHN с номиналом 20 А при 60 ° C

Минимальный размер проводника, разрешенный NEC для проводки в зданиях, — 14 AWG [310,5]. Однако местные нормы и правила и многие промышленные предприятия требуют, чтобы провод сечением 12 AWG использовался как наименьший провод ответвления. Таким образом, в этом примере вам может потребоваться использовать 12 AWG вместо 14 AWG.

Инжир.5. Устройства защиты от короткого замыкания и замыкания на землю предназначены для быстрого нарастания тока, кратковременных событий. С другой стороны, устройства защиты от перегрузки предназначены для длительных ситуаций с низкой скоростью тока.

Защита параллельных цепей от коротких замыканий и замыканий на землю. Устройства защиты от короткого замыкания и замыкания на землю защищают двигатель, аппаратуру управления двигателем и проводники от коротких замыканий или замыканий на землю. Они не защищают от перегрузки (430.51) ( рис.5, ).

Устройство защиты от короткого замыкания и замыкания на землю, необходимое для цепей двигателя, не является типом, необходимым для персонала (210,8), фидеров (215,9 и 240,13), служб (230,95) или временной проводки для розеток (527,6).

Согласно 430.52 (C), вы должны определить размер защиты от короткого замыкания и замыкания на землю для параллельной цепи двигателя, за исключением тех, которые обслуживают моментные двигатели, чтобы они не превышали проценты, указанные в Таблице 430.52.

Когда значение устройства защиты от короткого замыкания и замыкания на землю, которое вы найдете в таблице 430.52 не соответствует стандартному номиналу или настройке устройств защиты от сверхтоков, перечисленным в 240,6 (A), используйте устройство защиты следующего более высокого размера [430,52 (C) (1) Ex. 1].

Это заявление остановило вас? Вам это кажется неправильным? Это обычная реакция, но помните, что двигатели отличаются от других компонентов системы. Устройства защиты двигателя от перегрузки, такие как нагреватели и предохранители, защищают двигатель и другие элементы от перегрузки. Защита от короткого замыкания и замыкания на землю не обязана выполнять эту функцию.Таким образом, увеличение размера не повредит защите. Занижение размера предотвратит запуск двигателя.

Используйте следующий двухэтапный процесс, чтобы определить, какой процент из Таблицы 430.52 следует использовать для определения размера устройства защиты от короткого замыкания и замыкания на землю в ответвленной цепи двигателя.

Шаг 1: Найдите тип двигателя в Таблице 430.52.

Шаг 2: Выберите процентное значение из Таблицы 430.52 в соответствии с типом устройства защиты, например, без выдержки времени (одноразовый), двухэлементный предохранитель или автоматический выключатель с обратнозависимой выдержкой времени.Не забудьте при необходимости использовать устройство защиты следующего более высокого размера.

Давайте посмотрим, справитесь ли вы с этой концепцией с помощью короткой викторины. Какое из следующих утверждений верно? Используйте Таблицу 430.52, чтобы найти числа.

  1. Защита параллельной цепи от короткого замыкания (плавкий предохранитель без выдержки времени) для однофазного двигателя мощностью 3 л.с., 115 В, не должна превышать 110 А.

  2. Защита от короткого замыкания в параллельной цепи (двухэлементный предохранитель) для однофазного двигателя мощностью 5 л.с., 230 В, не должна превышать 50 А.

  3. Защита параллельной цепи от короткого замыкания (прерыватель с обратнозависимой выдержкой времени) для трехфазного синхронного двигателя мощностью 25 л.с., 460 В, не должна превышать 70 А.

Давайте рассмотрим каждый вопрос индивидуально. Мы будем ссылаться на 430.53 (C) (1) Ex. 1 и в таблице 430.52.

  1. Согласно таблице 430.148, 34A × 3,00 = 102A. Следующий размер — 110А. Так что это правда.

  2. Согласно таблице 430,148, 28A × 1,75 = 49A. Следующий размер — 50А. Так что это тоже правда.

  3. Согласно таблице 430.150, 26A × 2,50 = 65A. Следующий размер — 70А. Это тоже правда.

Помните следующие важные принципы:

  • Размер проводов должен быть равен 125% FLC двигателя [430,22 (A)].

  • Вы должны рассчитать перегрузку не более чем от 115% до 125% номинального тока двигателя, указанного на паспортной табличке, в зависимости от условий [430.32 (A) (1)].

  • Размер устройства защиты от короткого замыкания и замыкания на землю должен составлять от 150% до 300% FLC двигателя [Таблица 430.52].

Если вы сложите все три из них вместе, вы увидите, что допустимая нагрузка проводника ответвленной цепи (125%) и устройство защиты от короткого замыкания на землю (от 150% до 300%) не связаны между собой.

Этот последний пример должен помочь вам понять, обращали ли вы внимание.

Рис. 6. Хотя этот пример может беспокоить некоторых людей, проводники THHN 14 AWG и двигатель защищены от перегрузки по току с помощью устройства защиты от перегрузки 16A и устройства защиты от короткого замыкания 40A.

Пример № 4 : Верно ли какое-либо из следующих утверждений для двигателя мощностью 1 л.с., 120 В, номинальный ток на паспортной табличке 14 А? См. Рис. 6 .

(a) Проводники ответвленной цепи могут иметь диаметр 14 AWG THHN.

(b) Защита от перегрузки от 16,1 А.

(c) Для защиты от короткого замыкания и замыкания на землю разрешается использовать автоматический выключатель на 40 А.

(d) Все это правда.

Просматривая каждую из них, вы можете увидеть:

(a) Размер проводов соответствует 430.22 (А): 16А × 1,25 = 20А; Для таблицы 310.16 требуется 14 AWG при 60 ° C.

(b) Согласно 430,32 (A) (1), защита от перегрузки имеет следующие размеры: 14A (заводская табличка) × 1,15 = 16,1A.

(c) Защита от короткого замыкания и замыкания на землю определяется на основе 430,52 (C) (1): 16A × 2,50 = 40A автоматического выключателя.

Следовательно, все три утверждения верны.

Устройство защиты от перегрузки 16 А защищает проводники 14 AWG от перегрузки по току, а устройство защиты от короткого замыкания 40 А защищает их от короткого замыкания.Этот пример иллюстрирует иногда сбивающий с толку факт, что при расчете двигателя вы фактически рассчитываете защиту от перегрузки по току и защиты от короткого замыкания отдельно.

Расчеты двигателя долгое время были источником путаницы и ошибок для многих. Понимание того, что отличает эти расчеты, должно помочь вам каждый раз правильно выполнять расчеты двигателя. В следующем месяце мы рассмотрим определение размеров фидеров двигателей в Части 2.

Как найти автоматический выключатель подходящего размера? CB Calculator

Как рассчитать размер автоматического выключателя? Калькулятор размера выключателя с решенными примерами

Согласно NEC (Национальный электротехнический кодекс), IEC (Международная электротехническая комиссия) и IEEE (Институт инженеров по электротехнике и электронике), автоматический выключатель надлежащего размера является обязательным для всех. электрические цепи i.е. электропроводка в жилых домах, а также промышленная или коммерческая установка для предотвращения поражения электрическим током, опасного пожара и защиты подключенного электрического оборудования и приборов.

Для максимальной безопасности и надежной работы электрических машин рекомендуется использовать автоматический выключатель правильного и подходящего размера в соответствии с током, протекающим через него. Если мы не используем автоматический выключатель правильного размера.

В случае использования выключателя другого (большего или меньшего) размера вместо автоматического выключателя правильного размера, цепь, кабели и провода, даже подключенное устройство, могут нагреться, а в случае короткого замыкания оно может начать дымиться и гореть.Вот почему для бесперебойной работы необходим автоматический выключатель правильного размера.

В этом посте мы покажем, как выбрать автоматический выключатель правильного размера для монтажа и проектирования электропроводки с учетом соответствующего уровня напряжения, потребляемой мощности и разницы в% к нагрузке цепи и допустимой нагрузке по току выключателя.

Что такое автоматический выключатель?

A Автоматический выключатель (CB) — это устройство управления и защиты, которое:

  • Управляет (замыкает или размыкает) цепью вручную или с помощью дистанционного управления в нормальных и аварийных условиях.
  • Автоматический разрыв цепи при возникновении неисправности (например, перегрузка по току, короткое замыкание и т. Д.).

Автоматический выключатель используется для механизма переключения и защиты системы.

Автоматический выключатель — это переключающее, а также защитное устройство, используемое для включения / выключения цепи, а также предотвращения поражения электрическим током. Для точной работы и защиты используются даже сложные конструкции с автоматическими выключателями, такими как предохранители, реле, переключатели, заземление и т. Д.

Как работает автоматический выключатель?

В нормальных условиях, когда номинальный ток цепи ниже, чем номинальный ток автоматического выключателя, работа цепи нормальная, и ее можно изменить вручную. В случае неисправности или короткого замыкания, когда значение тока превышает ток автоматического выключателя, он автоматически сработает, т. Е. Отключит цепь от основного источника питания.

Например, автоматический выключатель на 30 А сработает при 30 А, независимо от того, постоянная или прерывистая нагрузка.Вот почему мы должны выбрать номинал тока для автоматического выключателя на 20-25% больше, чем ток, протекающий в кабелях и проводах к подключенному устройству.

Если мы используем автоматический выключатель на 100 А для цепи 30 А, он не защитит схему от токов короткого замыкания и может сжечь и повредить устройство, поскольку ток более 30 ампер не отключит автоматический выключатель. Короче говоря, мы должны использовать автоматический выключатель правильного размера в соответствии с устройством, то есть ток выключателя не должен быть ни ниже, ни выше, а должен составлять 125% от тока цепи.

Связанные сообщения:

Калькулятор размера автоматического выключателя

Следующий калькулятор размеров автоматического выключателя покажет разницу в% к нагрузке, уровень напряжения в разных странах и точный размер выключателя в амперах.

Связанные калькуляторы:

Расчет размера автоматического выключателя для однофазного источника питания

Чтобы определить подходящий размер автоматического выключателя для однофазного питания, он зависит от множества факторов, таких как тип нагрузки, материал кабеля, температура окружающей среды и т. Д.

Общее практическое правило состоит в том, что размер автоматического выключателя должен составлять 125% допустимой токовой нагрузки кабеля и провода или цепи, которая должна быть защищена автоматическим выключателем. Давайте посмотрим на следующие решенные примеры:

Пример 1:

Предположим, провод 12 калибра используется для цепи освещения 20 ампер с однофазным питанием 120 В. Какой автоматический выключатель лучше всего подходит для этой цепи на 20 А?

Решение:

Ток цепи: 12A

Размер автоматического выключателя:?

Размер выключателя должен составлять 125% тока цепи.

= 125% x 20A

= 1,25 x 20A

Размер автоматического выключателя = 25A

Пример 2:

Какой размер автоматического выключателя подходит для однофазного источника питания 120 В мощностью 2000 Вт?

Решение:

  • Нагрузка: 2000 Вт
  • Напряжение: 120 В (однофазное)

Ток цепи:

Согласно закону Ома,

  • I = P / V
  • I = 2000 Вт / 120 В
  • I = 16.66 A.

Размер автоматического выключателя:

Просто умножьте 1,2 или 1,25 на ток нагрузки.

1,2 x 16,66 A

Размер автоматического выключателя = 20 A

Пример 3:

Какой размер автоматического выключателя подходит для однофазной цепи нагрузки 230 В, 1840 кВт?

Решение:

  • Ток = мощность / напряжение
  • I = 1840 Вт / 230 В
  • I = 8A

Минимальный номинальный ток автоматического выключателя должен составлять 8 А.

Рекомендуемый размер автоматического выключателя должен быть

= 8A x 1,25

= 10

Расчет размера автоматического выключателя для трехфазного источника питания

Чтобы найти размер автоматического выключателя для трехфазного напряжения питания, мы должны знать точный вид нагрузки, так как на ток нагрузки влияет множество факторов. Другими словами, одно и то же правило не будет применяться к различным типам нагрузок, то есть к легкой, двигательной, индуктивной или емкостной нагрузке, поскольку двигатель изначально потребляет очень большой ток во время процесса запуска, а также влияет на коэффициент мощности.Для использования в жилых помещениях мы можем использовать ту же формулу, что и выше для однофазной сети, взяв √3 (1,732) из-за формулы трехфазной мощности.

Полезно знать: для той же нагрузки размер выключателя в трех фазах меньше номинала выключателя, используемого в однофазных цепях переменного тока.

Давайте подберем автоматический выключатель правильного размера для трехфазных цепей следующим образом.

Пример 1: Автоматический выключатель какого размера необходим для трехфазной нагрузки мощностью 480 В 6,5 кВт?

Решение:

Трехфазное питание: P = V x I x √3

Ток: P / V x √3

  • I = 6.5 кВт / (480 В x 1,732)… (√3 = 1,732)
  • I = 6,5 кВт / 831,36
  • I = 7,82 A

Рекомендуемый размер автоматического выключателя:

1,25 x 7,82 A = 9,77 A

Следующий ближайший стандарт автоматического выключателя — 10A .

Пример 2: Найдите автоматический выключатель подходящего размера для 3-фазной нагрузки 415 В, 17 кВт?

Решение:

  • Ток = Мощность / (Напряжение x √3)
  • I = 17000 Вт / (415 В x 1.732)
  • I = 23,65 A

Рекомендуемый размер автоматического выключателя: 1,25 x 23,65 A = 29,5 A . Следующее ближайшее значение — 30A .

Расчет размера автоматического выключателя для длительной и неконфликтной нагрузки

Поскольку автоматические выключатели (CB) и устройства защиты от перегрузки по току (OCPD) рассчитаны на 100% номинальный ток, то есть автоматический выключатель 30A может безопасно выдерживать ток 30A, но NEC предлагает 80% в качестве безопасного предела тока по сравнению с номинальным током выключателей.Это связано с тем, что все нагрузки не одинаковы, т.е. некоторые нагрузки являются одновременными (непрерывными), а другие — неодновременными (прерывистыми).

В случае спорных нагрузок в течение трех и более часов ток нагрузки не должен превышать 80% номинального тока автоматического выключателя и OCPD.

80% автоматического выключателя на 30 А составляет 24 А. Таким образом, цепь на 30 А можно безопасно использовать для цепи на 24 А.

Другими словами, для цепи нагрузки 24 А соответствующий размер выключателя будет:

24 А / 0.8 = 30А.

Пример 1: Размер выключателя для неконфликтной нагрузки 30 А

  • Точный 100% номинал для автоматического выключателя 30 А может использоваться для прерывистой нагрузки 30 А.

Пример 2: Размер CB для конфликтной нагрузки 28A

  • В случае непрерывной нагрузки применяется коэффициент 125%.
  • 1,25 x 28 A = 35A

Пример 3: Размер CB для неконфликтной нагрузки 30A и конфликтной нагрузки 28A

  • = 125% непрерывной нагрузки + 100% прерывистой нагрузки
  • = (1 .25 x 28A) + (30A)
  • = 75A

Связанное сообщение: Разница между реле и автоматическим выключателем

Полезно знать:

  • Прерыватель большего размера, используемый для защиты, может повредить воду обогреватель или другая подключенная техника даже приводит к возгоранию из-за перегрева.
  • Выключатель меньшего размера или такой же номинал с выключателем тока нагрузки может отключать и сбрасывать цепь снова и снова. Используйте прерыватель правильного размера.
  • Однофазный автоматический выключатель нельзя использовать для трех уровней напряжения питания.
  • Трехполюсный автоматический выключатель может использоваться в трехфазной системе с 2 или 3 полюсами.
  • Трехполюсный автоматический выключатель может использоваться только в однофазной системе и только в том случае, если это указано маркировкой или указано в руководстве пользователя.
  • 30A прерыватель и провод 10 калибра можно использовать с питанием 240 В переменного тока.
  • Выключатель не может превышать допустимую нагрузку на провод, за исключением некоторых нагрузок, например, большего количества нагрузок.

Кроме того, автоматический выключатель, рассчитанный на:

  • 120 В, можно использовать только для 120 В.
  • 240 В можно использовать для 120 В, 240 В, но не для 277 В (коммерческие приложения)
  • 120–277 можно использовать для 120, 240 и 277 В.
  • 120 В нельзя использовать в цепи 240 В и наоборот.
  • 15A, 120V нельзя использовать в цепи 20A, 120V.

Связанное сообщение: Как определить напряжение и номинальную силу тока переключателя, вилки, розетки и розетки

Размер автоматического выключателя,% и диаграммы ампер

Максимальный безопасный предел тока составляет 80% от номинального размера выключателя, за исключением некоторых моторы.Имейте в виду, что размер выключателя не должен увеличивать максимальную номинальную силу тока кабеля и провода. Ниже приведена диаграмма, показывающая% от максимального номинального тока номинала выключателя для различных типов токов нагрузки.

Тип нагрузки Максимальный размер автоматического выключателя% от тока
Резистивные нагрузки, тепло, плиты, тостеры, водонагреватели и т. Д. 125%
Освещение нагрузки %
430-152 Двигатели с герметичным уплотнением *, кондиционеры и тепловые насосы 175%
Сварочные аппараты 200%
Выключатели MCP для двигателей 125% или более крупного размера

* Двигатели, кроме герметичных 00-250% NEC

В следующих двух таблицах показаны подходящие размеры автоматического выключателя с калибром проводов и различным уровнем напряжения.

Похожие сообщения:

Калькулятор размера выключателя — электрические

Почему требуется точный размер выключателя?

Для повышения надежности важно правильно рассчитать размер выключателя.

  • Выключатель слишком большого размера не будет отключаться в условиях низкой неисправности или высокой перегрузки, что влияет на надежность системы
  • Выключатель меньшего размера выдает отключение при нормальных условиях, влияя на безопасность системы

Что такое коэффициент безопасности (С.F)?

Некоторое оборудование позволяет работать в определенном режиме перегрузки определенное время. Параметры выключателя производятся с учетом состояния перегрузки для обеспечения большей безопасности. Например: двигатель имеет номинальный ток 100 А, но может работать при 125 А в течение одного часа, это увеличение тока на 25% по сравнению с номинальным током известно как коэффициент безопасности.

Общие нагрузки и их запас прочности:

Нагрузка Коэффициент безопасности
Резистивная нагрузка и осветительные нагрузки 25%
Кондиционер и тепловой насос 75%
Сварщики 100%
Двигатели 25%

Параметр калькулятора размеров выключателя:

  • Выберите метод: укажите нагрузку (в киловаттах или ваттах) и ток (в амперах)
  • Если выбран ток: номинальный ток оборудования и требуемый коэффициент безопасности (S.F) вводится
  • Если выбрана нагрузка:

Для опции: Для постоянного, 1∅ переменного и 3 переменного тока.

Для цепей постоянного тока: требуется напряжение (в вольтах), мощность (в ваттах или киловаттах) и коэффициент безопасности (S.F) (в процентах).

Для цепей переменного тока: требуются напряжение (в вольтах), мощность (в ваттах или киловаттах), коэффициент мощности (P.F) (в единицах или процентах) и коэффициент безопасности (S.F).

Шаги для калькулятора размеров выключателя:

При подаче тока:

Формула для тока выключателя I (CB) при номинальном токе оборудования I (A):

I (С.B) = I (A) * (1 +

S.F / 100

)

При заданной нагрузке:

Для цепи постоянного тока:

Формула для цепей постоянного тока приведена ниже.

I (C.B) =

мощность в Вт / В

* (1 +

S.F / 100

)

Для однофазной цепи переменного тока:

Формула для однофазной цепи переменного тока такая же, как и для цепи постоянного тока с добавлением коэффициента мощности (p.f), который определяется как:

I (C.B) =

мощность в Вт / В * стр.f

* (1 +

S.F / 100

)

Для трехфазных цепей переменного тока:

Формула для трехфазной цепи переменного тока такая же, как и для двухфазной цепи переменного тока, но вместо 2 мы используем квадратный корень из 3 (~ 1,73), когда напряжение выражается в линейном соотношении (Vll), которое задается как:

I (C.B) =

мощность в ваттах / 1,73 * v LL * p.f

* (1 +

S.F / 100

)

Когда напряжение выражается через линию к нейтрали, мы используем 3 вместо 1.73.

I (C.B) =

мощность в ваттах / 3 * В LN * p.f

* (1 +

S.F / 100

)

Примечание

В формулах выше:

      • Коэффициент мощности (p.f) указывается в единицах измерения от 0 до 1 (например: 0,8, 0,9). Если p.f выражается в процентах, то сначала оно преобразуется в единицы путем деления коэффициента мощности в процентах на 100, а затем его значение приводится в формуле.
      • Мощность здесь в этой формуле выражается в ваттах, если пользователь определяет ее в киловаттах, то сначала она преобразуется в ватты путем деления киловатт на 1000, а затем ее значение указывается в формуле.
      • Breaker поставляется в некоторых стандартных размерах. Иногда рассчитанный размер выключателя недоступен на рынке. Таким образом, вы можете использовать ближайший номинальный автоматический выключатель. Например: ток выключателя по расчету составляет 45 ампер, а на рынке доступен автоматический выключатель на 50 ампер. Таким образом, мы можем использовать прерыватель на 50 ампер
      • .

Решенный пример:

При подаче тока:

Рассмотрим систему, в которой предусмотрен номинальный ток

Дано:

Номинальный ток = I (A) = 20 А

Коэффициент безопасности (S.F) = 25%

Требуется:

Ток выключателя = I (CB) =? (Амперы)

Раствор:

I (C.B) = 20 * (1 +

25/100

) 25 ампер

При заданной нагрузке (Вт):

Для однофазной системы:

Рассмотрим однофазную систему переменного тока, имеющую следующие данные:

Дано:

Напряжение = 230 В

Мощность = 1,5 кВт или 1500 Вт

Коэффициент безопасности (S.F) = 25%

Требуется:

Ток выключателя = I (CB) =? (Амперы)

Раствор:

I (C.B) =

1500/230 * 0,9

* (1 +

25/100

) 9,05 ~ 10 ампер

Для 3-фазной системы:

Рассмотрим трехфазную систему со следующими данными:

Дано:

Напряжение (межфазное) = 480 В

Мощность = 20 кВт или 20000 Вт

Коэффициент мощности (стр.е) = 0,9

Коэффициент безопасности (S.F) = 20%

Требуется:

Ток выключателя = I (CB) =? (Амперы)

Раствор:

Из трехфазной цепи переменного тока формула:

I =

20 000 / 1,73 * 480 * 0,9

* (1 +

20/100

) 32,07 А ~ 33 А

Если мы изменим напряжение с линии на линию на линию на нейтраль, например: V (фаза на нейтраль) = 277,13 В

Затем мы будем рассчитывать его по формуле трехфазной цепи переменного тока, когда напряжение задается как линия к нейтрали, то есть:

I =

20000/3 * 277.13 * 0,9

* (1 +

20/100

) 32,07 А ~ 33 А

Расчет автоматических выключателей и предохранителей для двигателей

Электродвигатели имеют очень большую силу тока. Подбор правильных выключателей и предохранителей для двигателя, будь то небольшой электродвигатель или промышленный, необходимо тщательно рассчитать. Неправильные автоматические выключатели и предохранители могут вызвать отказ и перегрев. Низкое напряжение также может вызвать сбой.

Если автоматический выключатель или предохранитель подходящего размера, вы можете проверить напряжение.В идеале напряжение на конце провода и требования к пусковой нагрузке должны быть одинаковыми. Просто зацепите маленький или большой электродвигатель за концы провода. Включи это. Что делает напряжение? Это падает? Он остается прежним? Если напряжение падает, значит, ваши провода слишком малы для двигателя.

Таблица сопротивления общего провода

В идеале двигатель должен иметь предохранитель с важной выдержкой времени где-то между 175–250% рабочего тока двигателя при полной нагрузке.Это зависит от того, используете ли вы автоматический выключатель. Приведенная ниже таблица представляет собой общее руководство, которое поможет вам выбрать правильный провод. При поиске нужных проводов всегда обращайтесь к профессионалу.

* Ом / 1000 футов

МЕДЬ

# 2

0,201

# 4

0,321

# 6

0.510

# 8

0,786

# 10

1,26

АЛЮМИНИЙ

# 1

0,253

# 2

0,319

# 4

0.508

# 6

0,808

Кроме того, может потребоваться удлинить провод, если падение напряжения слишком велико. Провод должен выдерживать на 25% больше силы тока, чем двигатель, потребляемый при максимальной работе с полной нагрузкой.

Выбор подходящего предохранителя

Предохранитель размыкает цепь при слишком высоком токе.Вы знаете установившийся ток полной нагрузки при 25 градусах Цельсия? Вам нужно знать это число, чтобы рассчитать правильный предохранитель. В идеале номинал предохранителя должен составлять 135% от этого значения. Посмотрите на мощность вашего прибора или двигателя и напряжение. Есть много типов предохранителей:

  • Картридж предохранитель
  • сменный предохранитель
  • Выключатель с предохранителем
  • Выпадающий предохранитель
  • MOV Предохранитель
  • Сбрасываемый / POLYFUSE
  • Автомобильный предохранитель
  • Плавкий предохранитель

Всегда округляйте рейтинг после выполнения необходимых расчетов или просто позвоните нам в LN Electric.Мы будем рады помочь вам рассчитать предохранитель, подходящий именно вам.

Что следует использовать: предохранитель или автоматический выключатель?

Ваши автоматические выключатели играют жизненно важную роль в первичной системе распределения электроэнергии. К сожалению, простой предохранитель часто выдерживает только определенную силу тока. Это полностью зависит от его рейтинга. С другой стороны, автоматический выключатель можно безопасно сбросить в случае срабатывания. Большинство домовладельцев используют в своих домах автоматические выключатели вместо предохранителей.Предохранитель имеет свойство плавиться при перегреве. Возможность повторного использования автоматического выключателя является основным преимуществом.

Позвоните профессионалам в LN Electric Motor

Каждый раз выбирайте правильный выключатель или предохранитель для вашего двигателя. Выбор неправильной детали может привести к серьезным повреждениям, поломке и даже травмам или повреждению имущества. Позвоните специалистам LN Electric сегодня. Когда вам нужно найти подходящий двигатель, в нашем внушительном ассортименте есть решение, которое вам нужно.

Наш дружелюбный персонал будет рад найти вам нужную продукцию.Компания LN Electric, являющаяся лидером в своей области, имеет многолетний опыт и отличное обслуживание клиентов. Мы стремимся помочь нашим клиентам каждый раз находить то, что им нужно, и по доступной цене. Свяжитесь с нами сегодня.

Как выбрать предохранитель или автоматический выключатель для группы двигателей в одной ответвленной цепи согласно NEC

Чтобы выбрать подходящий предохранитель или автоматический выключатель для установок групповых двигателей, вы должны применить особые правила Национального электрического кодекса (NEC) для установок групповых двигателей.Это относится к одиночному автоматическому выключателю или предохранителю для группы двигателей в параллельной цепи, что является одной защитой от короткого замыкания на входе в установке группового двигателя.

двигатель в той же ответвленной цепи

См. Разделы 430-53C и 430-53D NEC (Национальный электротехнический кодекс) для правильного выбора допустимой токовой нагрузки проводника. Это относится к одиночному автоматическому выключателю или предохранителю для группы двигателей в параллельной цепи, что является одной защитой от короткого замыкания на входе в установке группового двигателя.

Расчет номинала автоматического выключателя для группы двигателей

Пример -1
Восемь двигателей с размерами, указанными в таблице, установлены на конвейерной системе. Используются предохранители с выдержкой времени.

10

Количество двигателей Мощность (л.с.) Напряжение Ампер полной нагрузки (FLA)
1 5 460 7,6
4.8
5 2 460 3,4

В соответствии с разделом 430-52 NEC, разделом 430-53 и таблицей 430-152 предохранители с выдержкой времени должны иметь следующие размеры :
175% FLA для самого большого двигателя + сумма FLA для всех остальных двигателей
⇒ (1,75 x 7,6) + (2 x 4,8) + (5 x 3,4) = 39,9 A.

NEC 430-52 позволяет использовать следующий по величине предохранитель стандартного размера, который в данном случае составляет 40 А. Если ложное срабатывание является проблемой при выборе этого предохранителя, NEC разрешает использовать вместо него 225% наибольшего номинального тока двигателя. 175% при расчете размера.В этом случае расчет выглядит следующим образом (следующий по величине стандартный номинал предохранителя в данном случае составляет 45 А):
(2,25 x 7,6) + (2 x 4,8) + (5 x 3,4) = 43,7 A

Пример -2

Количество двигателя Мощность (л.с.) Напряжение FLA- Ампер полной нагрузки
2 10 460 14
1 760
2 3 460 4.8
5 2 460 3,4

В соответствии с разделом 430-52 NEC, разделом 430-53 и таблицей 430-152 NEC, автоматический выключатель с обратнозависимой выдержкой времени должен соответствовать размеру следующим образом (следующий по величине автоматический выключатель стандартного размера с обратнозависимой выдержкой времени составляет 90 А):
250% FLA для самого большого двигателя + сумма FLA для всех остальных двигателей
⇒ (2,5 x 14) + 14 +7,6 + (2 x 4,8 ) + (5 x 3,4) = 83,2 А

Если ложное срабатывание является проблемой, NEC допускает размеры автоматического выключателя с обратнозависимой выдержкой времени, которые «ни в коем случае не должны превышать 400% для токов полной нагрузки 100 А или менее или 300% для тока полной нагрузки более 100 А. .В этом случае расчет выглядит следующим образом (следующий по величине стандартный автоматический выключатель с обратнозависимой выдержкой времени в данном случае составляет 110 А):
(4,0 x 14) + 14 +7,6 + (2 x 4,8) + (5 x 3,4 ) = 104,2 А

двигатель в параллельной цепи

Дополнительная литература

Как рассчитать ток автоматического выключателя?

Сначала вычислите сумму всей электрической мощности P, рассчитанное общее количество тока AI = P / U, когда переключатель выбран так, чтобы он превышал общую величину утечки тока, отключен для получения определенного запаса или установлен, другими словами по электрике будет нести оставшийся ток утечки может быть дома 30мА., GFCI, как правило, не является защитой от перегрузки, если они хотят защитить цепь, если небольшие автоматические выключатели, миниатюрный автоматический выключатель не может быть выбран слишком большим. в общем, выбор малых автоматических выключателей типа C, используемых при некоторой ошибке, не очень велик и может спроектировать простой метод расчета приемлем:

1. уровень напряжения 10 / 0,4 кВ автоматического выключателя на стороне высокого давления емкости короткого замыкания можно рассматривать как бесконечный (мощность короткого замыкания на стороне 10 кВ обычно на 200 ~ 400 МВА даже больше, поэтому считается бесконечным, ошибка меньше 10% 25).

2. GB50054-95 «Технические характеристики распределения питания низкого напряжения» в статье 2.1.2 говорится: «Когда точка короткого замыкания 25 рядом с номинальным током подключенного двигателя и ток короткого замыкания превышает 1%, должен быть включен в ток обратной связи двигателя. Эффект «когда ток короткого замыкания 30KA, в зависимости от того, что составляет 1% 25, ​​должен составлять 300A, общая мощность электродвигателя около 150KW, и одновременный пусковой ток обратной связи, используемый в это время, должен составлять 6.5ΣIn.

3.Автоматические выключатели с импедансным напряжением представляют собой замкнутую вторичную (дорожную) в Великобритании, когда вторичная обмотка достигла своего номинального тока, перцентиль первичного напряжения для их автоматических выключателей с номинальным напряжением. Следовательно, когда первичное напряжение является номинальным напряжением, вторичный ток является предполагаемым током короткого замыкания.

4. Номинальный вторичный ток MCB Ite = Ste / 1,732U, где мощность Ste MCB (кВА), Ue представляет собой вторичное номинальное напряжение (напряжение нагрузки), Ue при 10/0.4KV = Таким образом, простой расчет вторичного номинального тока автоматического выключателя 0,4 кВ MCB должен иметь небольшую емкость x1,44 ~ 1,50.

5. Согласно (3) определение Uk, вторичный ток короткого замыкания (трехфазное короткое замыкание) к I (3) определения Uk, вторичный ток короткого замыкания (трехфазное короткое замыкание) к I ( 3) = Ite / uk, это среднеквадратичное значение переменного тока.

6. В том же автоматическом выключателе малой мощности, если короткое замыкание между фазами, то I (2) = 1,732I (3) / 2 = 0.866I (3)

Приведенные выше расчеты представляют собой небольшой выходной конец автоматического выключателя при значении тока короткого замыкания, которое является наиболее серьезной аварией при коротком замыкании. Если есть точка короткого замыкания от автоматического выключателя на определенном расстоянии, нам нужно учитывать полное сопротивление линии.

Консультации — Инженер по подбору | Основы защиты цепи двигателя

Цели обучения

  • Изучите разницу между электрической перегрузкой и перегрузкой по току.
  • Знайте, как выбрать устройство защиты двигателя от перегрузки.
  • Просмотрите, как выбрать устройство максимальной токовой защиты от короткого замыкания и замыкания на землю для цепей двигателя
  • Поймите, как правильно выбрать сечение проводов для двигателей.

NFPA 70: Статья 430 Национального электрического кодекса охватывает двигатели, включая их защиту от перегрузки, защиту от короткого замыкания и замыкания на землю, проводники, цепи управления, контроллеры, центры управления двигателями, средства отключения, системы привода с регулируемой скоростью (также известные как частотно-регулируемые приводы). ) и заземление.Эта статья основана на выпуске NEC 2017 года.

Часть III статьи 430 касается защиты двигателя и его цепи от перегрузки. Важно защитить электродвигатели, оборудование управления электродвигателями и проводники параллельных цепей электродвигателя от перегрузок электродвигателя и чрезмерного нагрева. Также очень важно, чтобы двигатель мог запускаться и работать по назначению.

NEC заявляет, что положения статьи 430 части III не должны применяться к цепям двигателей с номинальным напряжением более 1000 вольт. В этой статье рассматриваются типичные двигатели с напряжением ниже 1000 вольт.

Перегрузка двигателя в зависимости от перегрузки по току

Важно понимать разницу между перегрузкой и перегрузкой по току.

Перегрузка по току — это когда ток превышает номинальный ток двигателя или допустимую нагрузку на его проводники. Это может быть из-за перегрузки, короткого замыкания или замыкания на землю.

Перегрузка — это когда работа двигателя при превышении его нормальной номинальной полной нагрузки сохраняется в течение достаточно длительного времени, что может вызвать повреждение или перегрев двигателя. Короткое замыкание или замыкание на землю не считается состоянием перегрузки.Защита от перегрузки защищает двигатель от возгорания.

Защита двигателя от перегрузки не предназначена или может быть не в состоянии остановить токи короткого замыкания или токи замыкания на землю. Неисправность не является перегрузкой, как указано в определениях статьи 100 NEC. Однако перегрузка считается перегрузкой по току.

Короткое замыкание — это непреднамеренное электрическое соединение между любыми двумя нормально токоведущими проводниками электрической цепи, например, между фазой и нейтралью или между фазой и линией.

Замыкание на землю — это непреднамеренное электрически проводящее соединение между незаземленным проводником электрической цепи и обычно не токоведущими проводниками, металлическими дорожками качения, кожухами оборудования или землей. Во время замыкания на землю на металлических частях могут присутствовать опасные напряжения, пока не сработает устройство защиты от сверхтоков, такое как предохранитель или автоматический выключатель.

NEC также заявляет, что положения не требуют защиты двигателя от перегрузки, если потеря мощности может привести к потенциальной опасности для жизни, например, с пожарным насосом.

Защита двигателя от перегрузки

Ток полной нагрузки двигателя используется для определения защиты от перегрузки. Этот FLA указан на паспортной табличке оборудования. Примеры устройств защиты от перегрузки включают предохранители и автоматические выключатели, а также пускатели двигателей с реле (ами) перегрузки или полупроводниковый контроллер двигателя / пускатель.

NEC 430.32 состояний для двигателей непрерывного режима с коэффициентом эксплуатации 1,15 или более на паспортной табличке или с превышением температуры на паспортной табличке 40 ° C должно иметь устройство защиты от перегрузки, рассчитанное не более чем на 125% номинального тока двигателя, указанного на паспортной табличке (FLA). .

Двигатели, работающие в непрерывном режиме, обычно имеют продолжительную нагрузку, при которой ток FLA достигается в течение трех часов или более.

Типичной защитой от перегрузки могут быть предохранители или автоматические выключатели, если они применяются должным образом. При выборе устройства защиты от перегрузки, если расчет дает нестандартный номинальный ток для автоматического выключателя или предохранителя, инженер должен использовать следующий меньший размер. Стандартные размеры предохранителей и автоматических выключателей можно найти в NEC 240,6 (A).

Все остальные двигатели, кроме двигателей с заводской табличкой 1.15 или более или с превышением температуры на паспортной табличке на 40 ° C, устройство защиты от перегрузки должно иметь размер не более 115% от допустимой нагрузки двигателя.

Пример расчета размера устройства защиты двигателя от перегрузки:

Паспортная табличка двигателя имеет коэффициент использования 1,15 и номинальный ток 24,5 ампер.

NEC заявляет, что это устройство защиты от перегрузки должно иметь размер не более 125% от FLA двигателя для двигателей с эксплуатационным коэффициентом 1,15 или более.

24,5 ампер x 1,25 = 30,625 ампер

Используйте устройство защиты от перегрузки с номиналом 30 ампер, потому что номинальное значение не может превышать 125% от FLA.Это устройство защиты от перегрузки может быть предохранителем или автоматическим выключателем.

Рис. 1: Освещение приемной Джеймсон Крейн спортивного института Университета штата Огайо управляется по отдельной цепи. Предоставлено: Metro CD Engineering

Максимальная токовая защита двигателя

Часть IV статьи 430 NEC перечисляет требования к максимальной токовой защите двигателя. Это включает в себя защиту от короткого замыкания и замыкания на землю для двигателя, оборудования управления двигателем и проводов.

Статья 430.52 устанавливает требование, чтобы устройство защиты от короткого замыкания и замыкания на землю в параллельной цепи двигателя могло выдерживать пусковой ток двигателя. Обычно, когда напряжение сначала подается на асинхронный двигатель, требуется большой пусковой пусковой ток. Когда двигатель начинает достигать номинальной скорости, ток двигателя достигает значения FLA.

Таблица 430.52 в NEC предоставляет максимальные номинальные значения или настройки устройств защиты от короткого замыкания в параллельной цепи двигателя и замыкания на землю.В таблице перечислены типы двигателей (однофазные, многофазные двигатели переменного тока, кроме двигателей с фазным ротором, с короткозамкнутым ротором — кроме энергоэффективных двигателей конструкции B, синхронные, с фазным ротором и постоянного тока / постоянного напряжения). В таблице также указаны для каждого типа двигателя процентное значение тока полной нагрузки для различных устройств защиты от замыканий на землю и защиты от замыканий на землю: плавкие предохранители без выдержки времени, двухэлементные предохранители (с выдержкой времени), автоматический выключатель мгновенного срабатывания и автоматический выключатель с обратнозависимой выдержкой времени.

В этом примере расчета показано, как подобрать устройство защиты двигателя от короткого замыкания и замыкания на землю.

Определите размер обратного выключателя и сечение проводника для однофазного двигателя мощностью 5 лошадиных сил, 230 В, с клеммами 75 ° C.

Сначала перейдите к Таблице 430.52 и найдите строку с «однофазными двигателями». Затем перейдите к столбцу «прерыватель с обратнозависимой выдержкой времени». Там вы найдете «250», что означает «250% от тока полной нагрузки».

Инженер-электрик может не иметь доступа к паспортной табличке двигателя на этапе проектирования, чтобы определить FLA для двигателя. Для определения FLA необходимо связаться с производителем.Если FLA по-прежнему недоступен, инженер должен обратиться к таблице 430.248 NEC, в которой указан ток полной нагрузки в амперах для однофазных двигателей. Например: 5 лошадиных сил при 230 вольт — это 28 ампер.

28 ампер x 2,50 (это 250% тока полной нагрузки из таблицы 430.52) = 70 ампер.

Автоматический выключатель на 70 ампер стандартного размера, поэтому он подходит для устройства максимальной защиты от перегрузки по току для этого двигателя мощностью 5 лошадиных сил.

Если расчет защитного устройства не соответствует стандартному номиналу автоматического выключателя, то можно использовать устройство защиты от перегрузки по току следующего более высокого уровня.Это объяснение можно найти в Статье 430.52 (C) (1) Исключение 1. Обратитесь к этой статье в NEC для дальнейших исключений.

Минимальный размер проводов двигателя определен статьей 430.22. Это означает, что проводники для одного двигателя рассчитаны на ток полной нагрузки не менее 125% от указанного в таблице, а не на ток, указанный на паспортной табличке.

Из таблицы 430.248 используйте значения 28 ампер, полученные выше.

28 ампер x 1,25 (125% от полной нагрузки) = 35 ампер.

Используйте NEC Table 310.15 (b) (16), чтобы найти правильный размер проводника для меди, 75 ° C, тип THWN. Для 35 ампер это размер проводника 10 AWG.

Обратите внимание, что максимальная токовая защита устройства составляет 70 ампер, а сечение проводников — # 10 AWG. В этом примере максимальная токовая защита для цепи двигателя может превышать допустимую допустимую нагрузку проводов. Это то, с чем часто сталкиваются многие инженеры. Идея состоит в том, что сечение проводника должно соответствовать размеру устройства защиты от сверхтока.NEC позволяет устройству защиты от перегрузки по току превышать номинал проводов, чтобы учесть пусковой ток двигателя.

NEC позволяет использовать одно устройство максимальной токовой защиты от перегрузки двигателя, короткого замыкания в ответвлении двигателя и замыканий на землю. Статья 430.55 «Комбинированная защита от перегрузки по току» устанавливает, что одиночное устройство защиты от перегрузки по току должно соответствовать требованиям статьи 430.32.

ЧРП и системы регулируемых приводов

ЧРП

— это тип системы привода с регулируемой скоростью.ЧРП становятся все более распространенными на коммерческих и промышленных объектах. Частотно-регулируемые приводы могут обеспечить экономию энергии по сравнению с двигателями с постоянной скоростью.

NEC Статья 430 Часть X касается систем привода с регулируемой скоростью. Большинство частотно-регулируемых приводов имеют собственное устройство защиты от перегрузки, короткого замыкания и замыкания на землю.

Если частотно-регулируемый привод не имеет собственных защитных устройств, то для определения номинальных характеристик этих устройств следует использовать NEC 430.32 и 430.52.

Цепь защиты освещения

NEC считает, что освещение является постоянной нагрузкой.Это нагрузка, при которой максимальный ток составляет три часа или более.

Статья 410 NEC касается освещения. Однако в статье 210.19 рассматривается размер световодов, поскольку большинство осветительных приборов работают непрерывно в течение трех часов или более. 210,9 (A) (1) — для ответвленной цепи освещения не более 600 вольт. 210.19 (A) (1) (a) указывает, что когда параллельная цепь обеспечивает постоянную нагрузку, минимальный размер проводника ответвленной цепи должен составлять не менее 125% от продолжительной нагрузки.

Например, инженер-электрик проектирует освещение для нового учреждения спортивной медицины. Инженер определяет количество встраиваемых светодиодных осветительных приборов в зоне приема и ожидания, которые могут быть подключены к автоматическому выключателю на 120 вольт и 20 ампер, который не на 100% полностью установлен.

Автоматический выключатель со 100% номинальной мощностью может выдерживать ток, указанный в его номинале, для длительных нагрузок. Типичный автоматический выключатель рассчитан на 80% тока, указанного на выключателе для длительных нагрузок.Например, типичный автоматический выключатель на 20 ампер (не полностью рассчитанный на 100%) может выдерживать постоянные нагрузки 16 ампер, что составляет 80% от 20 ампер.

Управление декоративными осветительными приборами должно осуществляться по отдельной цепи (см. Рисунок 1). Осветительные приборы следует оставлять включенными непрерывно примерно на 16 часов каждый день. Каждая встраиваемая банка светильника на открытой офисной территории составляет 28 Вт.

В статье 210.19 (A) (1) (a)

NEC указано, что длительные нагрузки должны иметь размеры проводников параллельной цепи не менее 125% от продолжительной нагрузки.Если ответвленная цепь имеет постоянные нагрузки или любую комбинацию непрерывных и прерывистых нагрузок, минимальный размер проводника ответвленной цепи должен иметь допустимую нагрузку не менее прерывистой нагрузки плюс 125% от продолжительной нагрузки.

Расчет: Типовой автоматический выключатель на 20 А рассчитан на 16 А. При постоянной световой нагрузке 16 ампер / 1,25 (125%) = 12,8 ампер. Это означает, что для осветительных нагрузок в этой цепи доступно 12,8 А.

28 Вт необходимо преобразовать в вольт-амперы для этого расчета.Светодиодные источники света обычно имеют коэффициент мощности от 0,65 до 0,95. Для этого расчета мы будем использовать коэффициент мощности 0,85.

28 Вт / 0,85 = 32,9 вольт-ампер; это означает, что каждый встраиваемый светодиодный осветительный прибор потребляет 32,9 вольт-ампер.

Для определения максимального количества этих светодиодных осветительных приборов, разрешенных в цепи:

120 вольт x 12,8 ампер = 1536 вольт-ампер; это максимально допустимый ток в цепи.

1536 вольт-ампер / 32,9 вольт-ампер = 46.7 светодиодных светильников; 46 светильников — это максимальное количество встраиваемых светодиодных светильников в этой цепи.

Одна проблема, о которой инженеры-электрики могут не знать, — это пусковой ток для светодиодных источников света. Когда светодиодные источники света включены, может возникнуть большой бросок тока. Этот большой пусковой ток может привести к срабатыванию автоматического выключателя или срабатыванию предохранителя. Инженер должен определить, может ли пусковой ток и его продолжительность отключить автоматический выключатель.

В технических характеристиках светодиодного источника света может быть указано что-то вроде этого: «Для устранения пускового тока следует использовать плавкий предохранитель с задержкой срабатывания или автоматический выключатель типа C / D.Типичный автоматический выключатель типа C имеет минимальную уставку отключения, в 5-10 раз превышающую номинальный ток. Типичный автоматический выключатель типа D имеет минимальную уставку срабатывания, в 10-20 раз превышающую номинальный ток.

NEC Статья 411 содержит низковольтные системы освещения. Это для систем освещения, работающих от напряжения не более 30 вольт переменного тока или 60 вольт постоянного тока. Обычные низковольтные системы включают в себя некоторое освещение дорожек и распространены в коммерческих зданиях, музеях, ландшафтном дизайне и т.д.

Низковольтные системы освещения обычно имеют источник питания, осветительные приборы и другое сопутствующее оборудование, такое как дорожка для освещения дорожки.

В статье 411.7 NEC

говорится, что низковольтные системы освещения могут питаться от ответвленной цепи с максимальным током 20 А.

Защита электродвигателей и систем освещения входит в компетенцию NEC. Двигатели могут использоваться в системах жизнеобеспечения, таких как лифты, системы дымоудаления и т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *